An Exact Algorithm for the Linear Tape Scheduling Problem

Valentin Honoré, Bertrand Simon, Frédéric Suter

IN2P3 Computing Center / CNRS, Villeurbanne

Datamove / Polaris Seminar – Mars 2022

Outline

- General presentation of magnetic tapes
- 2 Model studied and algorithmic solutions
- Numerical simulations
- Conclusion

Tape usage today

 $\approx 10 \text{TB}$ on $1000{\times}1 \text{km}$ read at 10 m/s - 100 s MB/s

https://commons.wikimedia.org/wiki/File:LTO2-cart-wo-top-shell.jpg

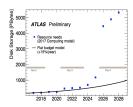
Primordial for HTC (High Throughput Computing) e.g., CC-IN2P3, CERN, Weather Forecast (100s PB)

Also: media companies, cloud archive...

- \odot Impressive technology improvements density: +30% / year (vs HDD: +8%)
- \bigcirc high latency (mount, load, position \rightarrow few mn) Adapted for Write Once Read Many

Why not use hard drives?

up to 6-10 times cheaper overall (before 2020)

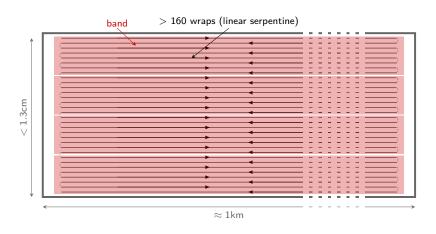


[Xin Zhao, HEPIX 2018]

air gap, power failure, lifetime

energy-efficient

Overview of a tape

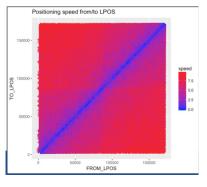


Note: wrap = dozens of tracks read / written simultaneously by parallel heads

Positioning times

Difficult to model

along the same wrap

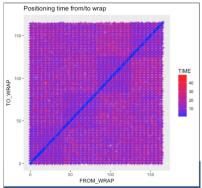


GC Melia, HEPIX 2018

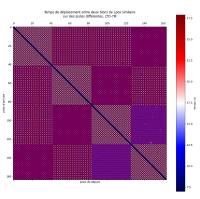
Positioning times

Difficult to model

- along the same wrap
- in-between two wraps



GC Melia, HEPIX 2018



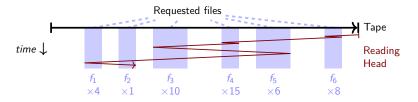
P. Vriet, Internship report 2020

Outline

- General presentation of magnetic tape
- Model studied and algorithmic solutions
- Numerical simulations
- Conclusion

Linear Tape Scheduling Problem

[CardonhaReal'16]



Assumptions:

- files are read left-to-right
- start on the right
- constant speed

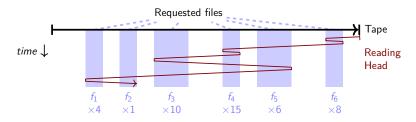
Input:

- ightharpoonup tape of n_f consecutive files
- n file requests (44 here)
- n_{req} distinct files requested (6)

Objective: average service time

Motivation: lack of fundamental theoretical results, models local files

Linear Tape Scheduling Problem



Assumptions:

- files are read left-to-right
- start on the right
- constant speed
- ▶ [new] U-turn penalty *U*

Input:

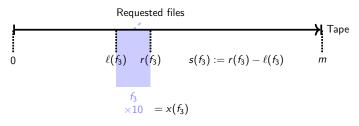
- ightharpoonup tape of n_f consecutive files
- n file requests (44 here)
- n_{req} distinct files requested (6)

Objective: average service time

Motivation: lack of fundamental theoretical results, models local files

CardonhaReal'16

Linear Tape Scheduling Problem



Assumptions:

- files are read left-to-right
- start on the right
- constant speed
- \triangleright [new] U-turn penalty U

Input:

- ightharpoonup tape of n_f consecutive files
- n file requests (44 here)
- $ightharpoonup n_{req}$ distinct files requested (6)

Objective: average service time

Motivation: lack of fundamental theoretical results, models local files

Related to the Linear Tape Scheduling Problem

Travelling Salesperson Problem (TSP)

super-famous NP-hard problem

Model studied and algorithmic solutions

- recent $(1.5 10^{-36})$ approximation [KarlinKG'21]
- easier on real line but 😟 minimizes makespan

Minimum Latency Problem / TRP (Repair) - variant

- minimize average service time, no release date/deadline
- polynomial on the line
- delays to repair a node: complexity open on the line

Dial-a-ride variant

- ightharpoonup pprox LTSP but with overlapping files in both directions
 - \longrightarrow NP-hard

Tapes except LTSP: 2 specific experimental papers in the 90's

Structural results

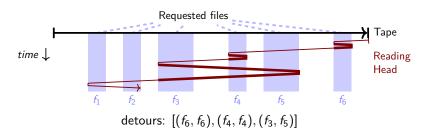
Any optimal solution

- lacktriangle after reaching $\ell(f_1)$, go straight to the rightmost unread request
- can be described by a set of detours done before

Definition (Detours)

A solution includes the **detour** (a,b) with $a \le b$ if:

▶ the 1st time the head reaches $\ell(a)$, go straight to r(b), back to $\ell(a)$



Structural results

Any optimal solution

- ightharpoonup after reaching $\ell(f_1)$, go straight to the rightmost unread request
- can be described by a set of detours done before

Definition (Detours)

A solution includes the **detour** (a,b) with $a \le b$ if:

▶ the 1st time the head reaches $\ell(a)$, go straight to r(b), back to $\ell(a)$

Lemma: detours never partially overlap (strictly laminar)

Structural results

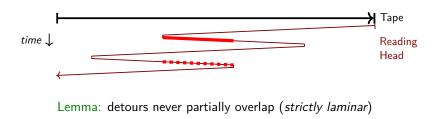
Any optimal solution

- ightharpoonup after reaching $\ell(f_1)$, go straight to the rightmost unread request
- can be described by a set of detours done before

Definition (Detours)

A solution includes the **detour** (a,b) with $a \le b$ if:

▶ the 1st time the head reaches $\ell(a)$, go straight to r(b), back to $\ell(a)$



Naive algorithms

NoDetour: go to the leftmost request, then to the rightmost

can be arbitrarily bad (place urgent requests on the right)

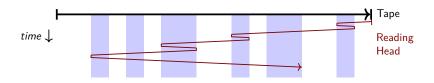
GS (Greedy Schedule): do all atomic detours, i.e., $\{(f_i, f_i)\}_{\forall i}$

Lemma [CardonhaReal'16] : **GS** is a 3-approximation if U = 0 Proof: does ≤ 3 times the optimal distance before reading each request

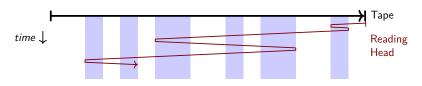
Heuristic improvements

[CardonhaCiréReal'18]

FGS (Filtered): remove detrimental atomic detours in $O(n_{req}^2)$

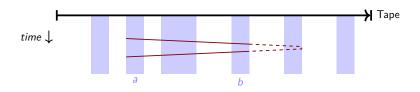


NFGS (Non-atomic): greedily add long detours if currently beneficial. Make one pass from left to right. Complexity in $O(n_{req}^3)$



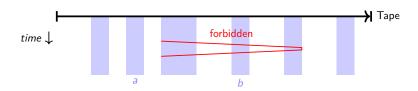
Each cell: three parameters $T[a, b, n_{skip}]$

- **compute** the best strategy from $r(\mathbf{b})$ to $\ell(\mathbf{a})$ assuming:
- 1 there is a detour (\mathbf{a}, f) for some $f \geq \mathbf{b}$,
- 2 there is no detour (f_1, f_2) such that $\mathbf{a} < f_1 < \mathbf{b} < f_2$,
- 3 when reaching $r(\mathbf{b})$, exactly n_{skip} requests have been skipped.
- \Rightarrow value pprox cost contribution from 'first r(b)' to 'r(b) after reading a'



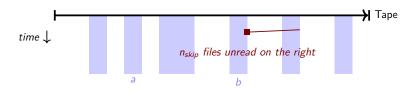
Each cell: three parameters $T[a, b, n_{skip}]$

- **compute** the best strategy from $r(\mathbf{b})$ to $\ell(\mathbf{a})$ assuming:
- 1 there is a detour (\mathbf{a}, f) for some $f \geq \mathbf{b}$,
- 2 there is no detour (f_1, f_2) such that $\mathbf{a} < f_1 < \mathbf{b} < f_2$,
- 3 when reaching $r(\mathbf{b})$, exactly n_{skip} requests have been skipped.
- \Rightarrow value pprox cost contribution from 'first r(b)' to 'r(b) after reading a'



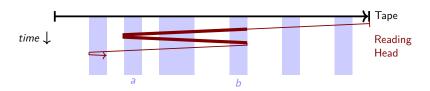
Each cell: three parameters $T[a, b, n_{skip}]$

- **compute** the best strategy from $r(\mathbf{b})$ to $\ell(\mathbf{a})$ assuming:
- 1 there is a detour (\mathbf{a}, f) for some $f \geq \mathbf{b}$,
- 2 there is no detour (f_1, f_2) such that $\mathbf{a} < f_1 < \mathbf{b} < f_2$,
- 3 when reaching $r(\mathbf{b})$, exactly n_{skip} requests have been skipped.
- \Rightarrow value \approx cost contribution from 'first r(b)' to 'r(b) after reading a'



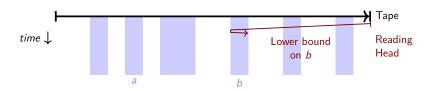
Each cell: three parameters $T[a, b, n_{skip}]$

- **compute** the best strategy from $r(\mathbf{b})$ to $\ell(\mathbf{a})$ assuming:
- 1 there is a detour (\mathbf{a}, f) for some $f \geq \mathbf{b}$,
- 2 there is no detour (f_1, f_2) such that $\mathbf{a} < f_1 < \mathbf{b} < f_2$,
- 3 when reaching $r(\mathbf{b})$, exactly n_{skip} requests have been skipped.
- \Rightarrow value pprox cost contribution from 'first r(b)' to 'r(b) after reading a'



Each cell: three parameters $T[a, b, n_{skip}]$

- **compute** the best strategy from $r(\mathbf{b})$ to $\ell(\mathbf{a})$ assuming:
- 1 there is a detour (\mathbf{a}, f) for some $f \geq \mathbf{b}$,
- 2 there is no detour (f_1, f_2) such that $\mathbf{a} < f_1 < \mathbf{b} < f_2$,
- 3 when reaching $r(\mathbf{b})$, exactly n_{skip} requests have been skipped.
- \Rightarrow value pprox cost contribution from 'first r(b)' to 'r(b) after reading a'

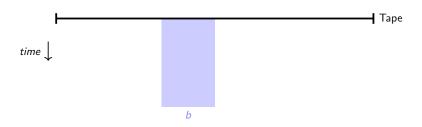


Dynamic program: base case, a = b

$$a = b \implies$$
 a detour starts at $\ell(b)$

 $n_{\ell}(b) := \#$ file requests strictly on the left of b

$$T[b, b, n_{skip}] = 2 \cdot s(b) \cdot (n_{skip} + n_{\ell}(b))$$

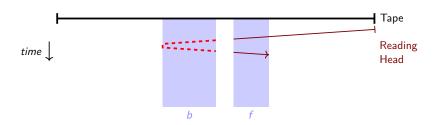


Dynamic program: base case, a = b

$$a = b \implies$$
 a detour starts at $\ell(b)$

 $n_{\ell}(b) := \#$ file requests strictly on the left of b

$$T[b, b, n_{skip}] = 2 \cdot s(b) \cdot (n_{skip} + n_{\ell}(b))$$

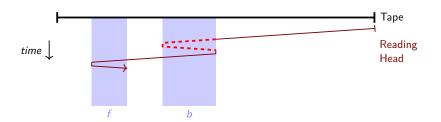


Dynamic program: base case, a = b

 $a = b \implies$ a detour starts at $\ell(b)$

 $n_{\ell}(b) := \#$ file requests strictly on the left of b

$$T[b, b, n_{skip}] = 2 \cdot s(b) \cdot (n_{skip} + n_{\ell}(b))$$



a < b and assume b is skipped

$$skip(a, b, n_{skip}) := T[a, left(b), n_{skip} + x(b)]$$

$$+ 2 \cdot (r(b) - r(left(b))) \cdot (n_{skip} + n_{\ell}(a))$$

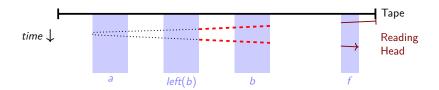
$$+ 2 \cdot (\ell(b) - r(left(b))) \cdot x(b)$$

a < b and assume b is skipped

$$skip(a, b, n_{skip}) := T[a, left(b), n_{skip} + x(b)]$$

$$+ 2 \cdot (r(b) - r(left(b))) \cdot (n_{skip} + n_{\ell}(a))$$

$$+ 2 \cdot (\ell(b) - r(left(b))) \cdot x(b)$$

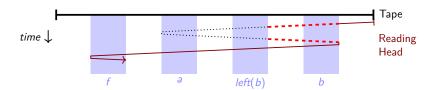


a < b and assume b is skipped

$$skip(a, b, n_{skip}) := T[a, left(b), n_{skip} + x(b)]$$

$$+ 2 \cdot (r(b) - r(left(b))) \cdot (n_{skip} + n_{\ell}(a))$$

$$+ 2 \cdot (\ell(b) - r(left(b))) \cdot x(b)$$

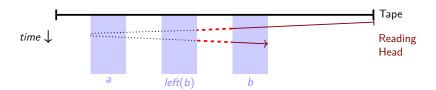


a < b and assume b is skipped

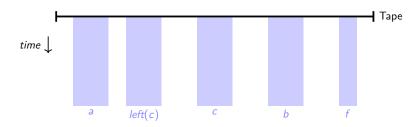
$$skip(a, b, n_{skip}) := T[a, left(b), n_{skip} + x(b)]$$

$$+ 2 \cdot (r(b) - r(left(b))) \cdot (n_{skip} + n_{\ell}(a))$$

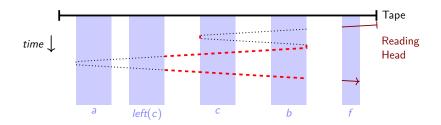
$$+ 2 \cdot (\ell(b) - r(left(b))) \cdot x(b)$$



$$\begin{aligned} \textit{detour}_c(a, b, \textit{n}_{\textit{skip}}) &:= T[a, \textit{left}(c), \textit{n}_{\textit{skip}}] + T[c, b, \textit{n}_{\textit{skip}}] \\ &+ 2 \cdot (r(b) - r(\textit{left}(c))) \cdot (\textit{n}_{\textit{skip}} + \textit{n}_{\ell}(a)) \\ &+ 2 \cdot U \cdot (\textit{n}_{\textit{skip}} + \textit{n}_{\ell}(c)) \end{aligned}$$



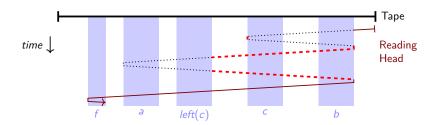
$$\begin{aligned} \textit{detour}_c(a, b, \textit{n}_{\textit{skip}}) &:= T[a, \textit{left}(c), \textit{n}_{\textit{skip}}] + T[c, b, \textit{n}_{\textit{skip}}] \\ &+ 2 \cdot (\textit{r}(b) - \textit{r}(\textit{left}(c))) \cdot (\textit{n}_{\textit{skip}} + \textit{n}_{\ell}(a)) \\ &+ 2 \cdot U \cdot (\textit{n}_{\textit{skip}} + \textit{n}_{\ell}(c)) \end{aligned}$$



$$detour_c(a, b, n_{skip}) := T[a, left(c), n_{skip}] + T[c, b, n_{skip}]$$

$$+ 2 \cdot (r(b) - r(left(c))) \cdot (n_{skip} + n_{\ell}(a))$$

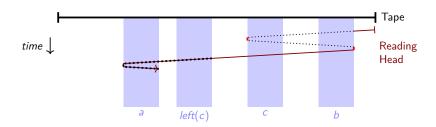
$$+ 2 \cdot U \cdot (n_{skip} + n_{\ell}(c))$$



$$detour_c(a, b, n_{skip}) := T[a, left(c), n_{skip}] + T[c, b, n_{skip}]$$

$$+ 2 \cdot (r(b) - r(left(c))) \cdot (n_{skip} + n_{\ell}(a))$$

$$+ 2 \cdot U \cdot (n_{skip} + n_{\ell}(c))$$



Dynamic program: complete formulation

$$skip(a, b, n_{skip}) := T[a, left(b), n_{skip} + x(b)]$$

$$+ 2 \cdot (r(b) - r(left(b))) \cdot (n_{skip} + n_{\ell}(a))$$

$$+ 2 \cdot (\ell(b) - r(left(b))) \cdot x(b)$$

$$detour_{c}(a, b, n_{skip}) := T[a, left(c), n_{skip}] + T[c, b, n_{skip}]$$

$$+ 2 \cdot (r(b) - r(left(c))) \cdot (n_{skip} + n_{\ell}(a))$$

$$+ 2 \cdot U \cdot (n_{skip} + n_{\ell}(c))$$

define $F_{a,b} :=$ files requested between a and b excluding a

Dynamic program DP (with a < b)

$$T[b, b, n_{skip}] = 2 \cdot s(b) \cdot (n_{skip} + n_{\ell}(b))$$

$$T[a, b, n_{skip}] = \min \left(skip(a, b, n_{skip}) ; \min_{c \in F_{a,b}} detour_{c}(a, b, n_{skip}) \right)$$

Complexity in $O(n \cdot n_{reg}^3)$

More dynamic programs

$LogDP(\lambda)$: **DP** restricted to detours spanning $\lambda \log n_{req}$ requested files

Reduced complexity in $O(\lambda^2 \cdot n_{req} \cdot n \cdot \log^2(n_{req}))$ Tested with $\lambda \in \{1, 5\}$

SIMPLEDP: DP forbidding intertwined detours

Similar to **DP** but *a* is always f_1 . Instead of calling $T[b, c, n_{skip}]$, account for the cost of the detour (c, b)Reduced complexity in $O(n \cdot n_{rea}^2)$

Note: dependency in n and not $\log n \longrightarrow \text{pseudo-polynomial}$ in high-multiplicity instances (harder problem as in scheduling)

Note2: concurrent similar solution from [CardonhaCireReal'21]

Outline

- Numerical simulations

Simulations: overview

Dataset: 2 weeks at CC-IN2P3

- ▶ 169 tapes, > 3M files
- focus on reading operations
- filtering steps, data processing (e.g., merge reads on aggregates)
- ▶ median data: 150 files requested, 3k requests, 50% file size variation

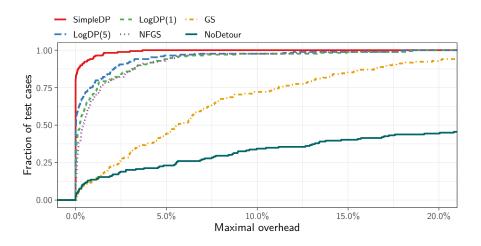
 ${\sf Code} + {\sf dataset} \ ({\sf with} \ {\sf statistical} \ {\sf descriptions}) \ {\sf available} \ {\sf online}$

Experimental methodology

- ▶ choose 3 values for $U: \{0, 0.5, 1\} \times$ average file size reading time
- median time performance (seconds, on a simple Python program):

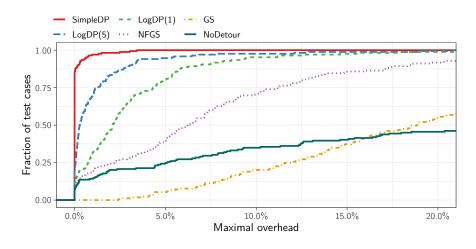
FGS	NFGS	LogDP(1)	SIMPLEDP	LogDP(5)	DP
< 0.1	0.5	5	20	50	280

Simulation results, U = 0



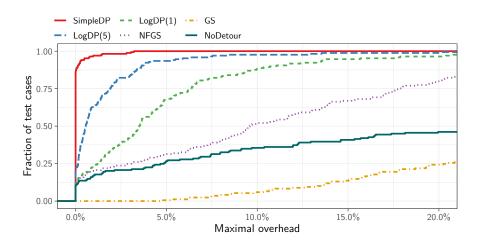
Performance profile: best is top-left (most instances with low overhead vs OPT)

Simulation results, U = file/2



Performance profile: best is top-left (most instances with low overhead vs OPT)

Simulation results, U = file



Performance profile: best is top-left (most instances with low overhead vs OPT)

Outline

- General presentation of magnetic tapes
- 2 Model studied and algorithmic solutions
- Numerical simulations
- Conclusion

Conclusion

File:LTO2-cart-wo-top-shell.jpg

General: tapes are past & future

- tapes are primordial in some fields (€\$£¥₩) but neglected by CS research
- fundamental problems are still open

On LTSP

- high-multiplicity variant remains open
- huge gap between theoretically studied models and actual issues

Perspectives on other tape-related topics

- multi-tape requests: optimize waiting queues
- optimize tape / disk storage ratio

