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Context

Problem Model Program Machine Solution

FOR k = 0 . . TILES−1
FOR n = 0 . . k−1

A[ k ] [ k]<−DSYRK(A[ k ] [ n ] ,A[ k ] [ k ] )
A[ k ] [ k]<−DPOTRF(A[ k ] [ k ] )
FOR m = k+1. . TILES−1

FOR n = 0 . . k−1
A[m] [ k]<−DGEMM(A[ k ] [ n ] ,A[m] [ n ] ,A[m] [ k ] )

A[m] [ k]<−DTRSM(A[ k ] [ k ] ,A[m] [ k ] )

PlaFRIM

Pontarlier

Graph Schedule

Separate “what” from “how”
Task example: matrix multiplication

Focus of this thesis
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Task graph paradigm
Widely used in runtime systems
Ï Goal: relieve software engineers of low-

level architecture-specific decisions
Ï Vertex = task,

edge = data dependence
Ï Runtime scheduler decides the allocation

Schedulers face multiple challenges
Need for theoretical insights in order to implement efficient solutions

Assumptions in this presentation
Ï The platform is a shared-memory system
Ï Whole graph is known beforehand
Ï Estimated execution times are available

Ex: matrix multiplication 2000×2000 takes 30ms on a CPU

Bertrand SIMON Scheduling Task Graphs on Modern Computing Platforms 3 / 40



Outline of the thesis

Exploiting task parallelism [Euro-Par 2015, TPDS 2018]

Chapters 1 & 2 Allocate several processors per task

Efficiently using several types of processors [Euro-Par 2018]

Chapter 3 Improved existing online algorithm minimizing makespan
& first online lower bounds

Coping with a limited memory [IPDPS 2018, IPDPSW 2017]

Chapter 4 Prevent schedulers from exceeding the available memory
Chapter 5 Minimize memory / disk transfers

Designing data structures minimizing memory / disk transfers
[PODS 2016, LATIN 2016]

Chapter 6 Work conducted during a research visit
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Scheduling graphs of parallel tasks Coping with a limited available memory Conclusion

Outline

1 Scheduling graphs of parallel tasks
Evaluation of existing speedup models and our proposition
Analysis of scheduling algorithms to minimize the makespan
Experimental comparison

2 Coping with a limited available memory
Model and maximum memory peak
Efficient scheduling with bounded memory & simulation results

3 Conclusion
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Scheduling graphs of parallel tasks Coping with a limited available memory Conclusion

Context of the project

Target application
Ï Workflow occurring in linear algebra:

QR factorization of a sparse matrix in the qr_mumps software
Ï Assembly tree: each node has exactly one successor

Computations inside each task
Ï QR decomposition of a dense matrix of a given size
Ï Each task can be in turn parallelized
Ï Need to decide how many processors are allocated to each task
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Scheduling graphs of parallel tasks Coping with a limited available memory Conclusion

Description of the problem
Graph
Ï Tree generalized to a Series-Parallel graph
Ï Purpose: find a schedule achieving the shortest makespan

T

T

Parallel and malleable tasks
Ï Processors can be added to a task or removed during its execution
Ï Each task: sequential processing time wi and speedup function
Ï Speedup function

timei (10 procs.)= wi
speedupi (10 procs.)

Ï Similar tasks =⇒ similar speedups 0 10 20

2

4

6

Processors allocated
Sp

ee
du

p

Sample task speedups
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Scheduling graphs of parallel tasks Coping with a limited available memory Conclusion

Need for a speedup model

Moldable tasks (constant allocation), any speedup

Ï High-complexity FPTAS [Günther et al. 2014]

Ï Low-complexity heuristic [Hunold 2014]

Malleable tasks, concave & non-decreasing speedup
Ï (2+ε)-approximation of huge complexity [Makarychev et al. 2014]

Objectives:

Ï Design an accurate speedup model for assembly tree tasks
Ï Prove and propose low-complexity guaranteed algorithms
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Scheduling graphs of parallel tasks Coping with a limited available memory Conclusion

The speedup model of Prasanna and Musicus [1996]

Description of the model
Ï Advocated for matrix operations
Ï Speedup(p)= pα, with 0<α< 1
Ï / same α for all tasks,

non-integral allocation,
infinite speedup

1

1

speedup

processors

α= 1
perfect parallelism

0<α< 1

α= 0
no parallelism

Theorem (Prasanna & Musicus, proof simplified in this thesis)
In the unique optimal schedule, at any parallel node G1 ∥G2, the share
of processors given to G1 is constant and easily computed.

G1

70% of procs

G2

30% of procs
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Scheduling graphs of parallel tasks Coping with a limited available memory Conclusion

The speedup model of Prasanna and Musicus [1996]

Description of the model
Ï Advocated for matrix operations
Ï Speedup(p)= pα, with 0<α< 1
Ï / same α for all tasks,

non-integral allocation,
infinite speedup

1

1

speedup

processors

α= 1
perfect parallelism

0<α< 1

α= 0
no parallelism

Results on two nodes of p and q cores
Ï Scheduling independent tasks is NP-hard even if p = q
Ï Design of a

(4
3
)α- approximation for p = q

Ï Design of an FPTAS for independent task scheduling and p 6= q
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Scheduling graphs of parallel tasks Coping with a limited available memory Conclusion

Experimental evaluation of the Prasanna & Musicus model
Instances
Ï Graphs: assembly trees of sparse matrices (SuiteSparse collection)

tasks: QR decompositions of a dense matrix

Results
Ï Benchmark > 10000 tasks with 1 to 24 cores (PlaFRIM platform)

Each task: plot speedup, correct decrease
Fit the pα model with α= 0.9

Ï / Insufficient accuracy: same speedup for all tasks, unknown limit
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Scheduling graphs of parallel tasks Coping with a limited available memory Conclusion

The well-known roofline model
Description of this model
Ï First processors are fully used;

a plateau is ultimately reached
Ï δi : tunable parameter
Ï / insufficient accuracy (R2 ≈ 0.9)

especially near δi
Ï Optimal schedule NP-hard

(new proof in this thesis)
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Scheduling graphs of parallel tasks Coping with a limited available memory Conclusion

Our speedup model proposition

Simple and accurate model
Ï Perfect then linear then plateau
Ï Three parameters per task
Ï , Good accuracy (R2 ≈ 0.98)
Ï / Optimal schedule NP-hard processors

speedup

δ1
i δ2

i

Σi
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slope < 1
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Scheduling graphs of parallel tasks Coping with a limited available memory Conclusion

Related work on explicit speedup functions

Moldable tasks
Ï Single-threshold: (3− 2

p ) - approximation [Wang & Cheng 1992]

Ï time(p)= wi
p + (p−1)c [Kell & Havill 2015]

Ï time(p)=w (s)
i + w (p)

i
p : Amdahl’s law

Malleable tasks
Ï pα: optimal solution in linear time [Prasanna & Musicus 1996]

Ï Single-threshold: 2-approximation FLOWFLEX [Balmin et al. 2013]

Transform a non-integer allocation into an integer allocation
Ï Valid for malleable tasks under piecewise linear speedups

[McNaughton 1959]
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Scheduling graphs of parallel tasks Coping with a limited available memory Conclusion

PROPORTIONALMAPPING

Simple allocation for trees or SP-graphs [Pothen et al. 1993]
Ï On G1 ∥G2: constant share to Gi , proportional to its weight Wi
Ï Then schedule each task ASAP

30 procs 30 procs
G1

10 procs

G2
20 procs

if W1
W2

= 10
20

Imperfect speedup: tasks do not finish simultaneously so processors idle

Proposed extensions for our model
Ï PROPMAPEXT: when a task terminates, reallocate its processors
Ï PROPMAPEXTTHRESH: idem but never exceeds δ2
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Scheduling graphs of parallel tasks Coping with a limited available memory Conclusion

FLOWFLEX

Principle (designed for a single threshold) [Balmin et al. 13]
Ï Schedule the graph on an infinite number of processors
Ï Downscale the allocation on each constant-allocation interval

Adaptation to our model
Ï Similar to PROPMAPEXTTHRESH: rebalance idling processors

Bertrand SIMON Scheduling Task Graphs on Modern Computing Platforms 17 / 40



Scheduling graphs of parallel tasks Coping with a limited available memory Conclusion

Design of a greedy strategy: GREEDY-FILLING

Algorithm
Ï Consider free tasks by decreasing bottom-level:

allocate δ1
i processors to each task

if processors remain, increase the allocation to δ2
i processors

Ï When the first task terminates, reset the allocations and repeat

Illustration

initial profile:

p

time

bu
sy

free tasks:
{1,2,3,4}

tasks allocation:

p

time

bu
sy

next profile:

p

time

bu
sy
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Theoretical guarantees

Theorem
PROPORTIONALMAPPING, GREEDY-FILLING and FLOWFLEX are
(1+ r)-approximation of the optimal makespan, with r =maxi

(
δ2
i
/
Σi

)≥ 1.

Corollary: they are 2-approximation for the single-threshold model.

processors

speedup

δ1
i δ2

i

Σi

slope = 1
slope < 1

Note: same factor, but two different arguments
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Outline

1 Scheduling graphs of parallel tasks
Evaluation of existing speedup models and our proposition
Analysis of scheduling algorithms to minimize the makespan
Experimental comparison

2 Coping with a limited available memory
Model and maximum memory peak
Efficient scheduling with bounded memory & simulation results

3 Conclusion
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Synthetic graphs (200 nodes)

Performance profile
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Algorithm Greedy-Filling PropMapNaive PropMapExt PropMapExtThresh FlowFlex

Speedup: δ1
i ∝ time(1 proc.) and δ2

i uniform in [δ1
i ,2δ1

i ]

Ï Right: makespan normalized by a lower bound (best is 1.0, bottom)
Sample representative random graph

Ï Left: performance profile (best is top-left)
GREEDY-FILLING is almost always the best
Gains > 5% in 50% of the cases against any other heuristic
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Assembly trees [SuiteSparse collection] (30 to 6000 nodes)

Performance profile
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Algorithm Greedy-Filling PropMapNaive PropMapExt PropMapExtThresh FlowFlex

Speedup = actual timings

Ï Left: performance profile (best is top-left)
PROPORTIONALMAPPING performs the worst,
its extensions are the best

Ï Right: makespan normalized by a lower bound (best is 1.0, bottom)
Sample tree
Results heavily depend on the tree & number of processors
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Summary of this part

On the two-threshold model
Ï Far more accurate than existing ones for QR decompositions
Ï NP-complete, as the single-threshold one
Ï Theoretically guaranteed low-complexity heuristics

On the heuristics
Ï GREEDY-FILLING (also on DAGs)

best on well-balanced instances (low idle times)
Ï PROPORTIONALMAPPING extensions

best when several paths should be prioritized
globally the best on our assembly trees dataset
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Coping with a limited available memory

Focus on massively parallel graphs
Ï Many tasks executed concurrently

Limited available memory
Ï Some traversals may go out-of-memory
Ï Assume we know one traversal that fits

Objective

Ï Prevent dynamic schedulers from exceeding memory
(6= provide one static schedule)

Maximum memory peak of a graph:maximum memory that any
schedule may use
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An elementary memory model
Task graph weights
Ï Vertex wi : estimated task duration Ï Edge mi ,j : data size

Memory behavior
Ï Task starts: free inputs (instantaneously)

allocate outputs
Ï Task ends: outputs stay in memory
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An elementary memory model
Task graph weights
Ï Vertex wi : estimated task duration Ï Edge mi ,j : data size

Memory behavior
Ï Task starts: free inputs (instantaneously)

allocate outputs
Ï Task ends: outputs stay in memory

Emulation of other memory behaviors
Ï Inputs not freed, additional execution memory: duplicate nodes

A

wA = 10
2 3 A1

wA1 = 10

A2

wA2 = 0
2 5 3
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Maximum memory peak equivalent

Topological cut = partition of the vertices (S ,T ) with
Ï Source s ∈ S and sink t ∈T
Ï No edge from T to S
Ï Weight of the cut = sum of all edge weights from S to T
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Topological cut ←→ execution state where T nodes are not started yet

Equivalence in our model between:
Ï Maximum memory peak (any parallel execution)
Ï Maximum weight of a topological cut
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Computing the maximum topological cut
Literature: Min-Cut polynomial, Max-Cut NP-hard even on DAGs

Theorem
Computing the maximum topological cut on a DAG is polynomial.

Ï Dual problem: Min-Flow (larger than all edge weights)
Ï Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1 Build a large flow F on the graph G
2 Consider Gdiff with edge weights Fi ,j −mi ,j

3 Compute a maximum flow maxdiff in Gdiff

4 F −maxdiff is a minimum flow in G
5 Residual graph → maximum topological cut mi ,j

Fi ,j

diff i ,j
maxdiff i ,j

MinFlow i ,j
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1 Scheduling graphs of parallel tasks
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Coping with limited memory

Problem
Ï Allow use of dynamic schedulers
Ï Limited available memory M
Ï Keep high level of parallelism

Our solution
Ï Add edges to guarantee that any parallel execution stays below M
Ï Minimize the obtained critical path
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Problem definition and complexity

Definition (PartialSerialization of a DAG G under a memory M)
Compute a set of new edges E ′ such that:
Ï G ′ = (V ,E ∪E ′) is a DAG
Ï MaxTopologicalCut(G ′)≤M
Ï CritPath(G ′) is minimized

Theorem (Sethi 1975)
Computing a schedule that minimizes the memory usage is NP-hard.

Theorem
PartialSerialization is NP-hard given a memory-efficient schedule.

Optimal solution computable by an ILP (builds transitive closure)
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Heuristic solutions for PartialSerialization

Framework – inspired by [Sbîrlea et al. 2014]

1 Compute a max. top. cut (S ,T )
2 If weight ≤ M : succeeds

3 Add edge (u,v) with u ∈T , v ∈ S
without creating cycles;
or fail

4 Goto Step 1

S

s t

T

Several heuristic choices for Step 3
MinLevels does not create a large critical path

RespectOrder follows a precomputed memory-efficient schedule,
always succeeds

MaxSize targets nodes dealing with large data
MaxMinSize variant of MaxSize
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Simulations – Pegasus workflows (LIGO 100 nodes)
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Heuristic MinLevels RespectOrder MaxMinSize MaxSize

DFS memory ≡ 0 1 ≡ MaxTopCut

lower is
better

Failute rate on the DFS memory: 100% 0% 15% 65%

Ï Median ratio MaxTopCut / DFS ≈ 20
Ï MinLevels performs best, RespectOrder always succeeds
Ï Memory divided by 5 for CP multiplied by 3
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Summary of this part

Memory model proposed
Ï Elementary but equivalent to more complex models
Ï Explicit algorithm to compute the maximum memory peak

Prevent dynamic schedulers from exceeding memory
Ï Add edges, aiming at low critical path length
Ï NP-hard to get the lowest CP length
Ï Several heuristics with good performance on actual graphs (+ ILP)
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Conclusion
Common approach for each problem
Ï Design of an ideal but realistic model
Ï Complexity study and algorithms
Ï Evaluation via simulations on mostly actual datasets
Ï Goal: identify the challenges & influence future implementations

Part 1: Scheduling malleable task graphs

Ï Accurate speedup model for linear algebra workflows
Ï Design & evaluation of guaranteed algorithms

Part 2: Coping with a limited available memory

Ï Elementary but expressive memory behavior
Ï Design & validation of heuristics relying on graph theory tools
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Short-term perspectives on the parts covered

Part 1: Handle data movements
Ï Difficult to study with a general model
Ï Observation: Proportional Mapping has good locality properties &

quite good makespan
Ï Improve its makespan by heuristic modifications, preserving locality

properties

Part 2: Reduce heuristics complexity
Ï Current algorithm: too many iterations for each heuristic
Ï Add many edges per iteration, use synchronization vertices, choose

endpoints further from the cut. . .
Ï Second direction: adapt the solution to the platform, i.e., change

the goal (critical path length)
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Long-term perspective: going distributed

Shared-memory platforms: at most tens of processors

Makespan minimization
Ï Problem: allocation of tasks to nodes avoiding communications

Direction: graph clustering algorithms on hierarchical tasks (new
paradigm under development in StarPU) + dynamic corrections

Ï Scheduler must be distributed

Memory handling
Ï Memory distributed among nodes
Ï Need to model memory operations
Ï Shared-memory solutions: “Don’t start too many tasks!”

Distributed memory: need for a new approach, depends on the
allocation to the nodes
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