Task Graph Scheduling on Modern Computing Platforms

Bertrand SIMON

ENS de Lyon, France

Bremen — May 2018

Presentation

3rd-year PhD student in ENS Lyon, ROMA team

- Advisors: Loris Marchal & Frédéric Vivien
- Defending on July 4th

Education and previous experience

- Licence & Master in CS at ENS Lyon
- 2015: 5-month research visit at the Stony Brook University, NY in the team of Michael Bender

Online scheduling of DAGs on hybrid platforms

3 Parallel scheduling of DAGs under memory constraints

Task Graph Scheduling on Modern Computing Platforms

Focus on three main challenges

- Exploiting task parallelism
- Using efficiently heterogeneous processors
- Coping with a limited memory

Exploiting task parallelism

Main difficulty

Cope with two conflicting types of parallelism

Context

- Literature: few speedup assumptions \rightarrow complex algorithms
- Linear algebra: similar tasks so similar speedup design of low-complexity algorithms

Guermouche, Marchal, Simon, Vivien

EuroPar 2016

• Existing speedup function [Prasanna & Musicus 1996]

Marchal, Simon, Sinnen, Vivien

TPDS 2018

- Design a tunable two-threshold roofline speedup function
- High accuracy on extensive benchmarks for linear algebra kernels

Using efficiently heterogeneous processors

Setting

- Two types of processors (CPUs and GPUs)
- Online: remainder of graph unknown

Main difficulty

Decide which tasks should be accelerated on rare GPUs

Canon, Marchal, Simon, Vivien

EuroPar 2018

Online DAG scheduling: lower bounds and competitive algorithms

— First focus of this talk

IPDPS 2018

Coping with a limited available memory

First setting: some executions fit in memory

Marchal, Nagy, Simon, Vivien

Prevent dynamic schedulers from exceeding memory

- Second focus of this talk

Second setting: insufficient memory, I/Os necessary

 I/O minimization: NP-hard on DAGs NP-hard on trees with unsplittable files

Marchal, McCauley, Simon, Vivien

IPDPS Workshops 2017

Minimize I/Os in task trees with splittable files; complexity open

Additional projects: external memory data structures

Complexity = I/O number

Main difficulty

Group elements to optimize I/Os

Bender, Chowdury, Conway, Farach-Colton, Ganapathi, Johnson, McCauley, Simon, Singh

LATIN 2016

 \blacktriangleright Minimize the I/O complexity of computing prime tables via sieves

Outline

1 PhD thesis overview

Online scheduling of DAGs on hybrid platforms

- Lower bounds
- Competitive algorithms
- Simulations results

Parallel scheduling of DAGs under memory constraints

- Model and maximum parallel memory
- Efficient scheduling with bounded memory
- Simulation results

Online scheduling of DAGs on hybrid platforms

Hybrid Platforms

▶ Many CPUs + few accelerators (GPUs, Xeon Phi, ...)

Task Graphs (DAGs)

Used in runtime schedulers (StarPU, StarSs, XKaapi, ParSEC ...)

Online Scheduling

- Unknown graph
 - tasks not submitted yet
 - depends on results

- Advantages vs offline
 - quicker decisions
 - robust to inaccuracies
- ► Semi-online: partial information, e.g., bottom-levels (≈ critical path)

Main challenge

Take binary decisions without knowing the future

Model

- $m \text{ CPUs} \ge k \text{ GPUs}$
- Graph of tasks $T_i : \left\{ \overline{p_i} = \text{CPU time} ; \underline{p_i} = \text{GPU time} \right\}$
- Online: only available tasks are known

Model

- $m \text{ CPUs} \ge k \text{ GPUs}$
- Graph of tasks $T_i : \left\{ \overline{p_i} = \text{CPU time} ; \underline{p_i} = \text{GPU time} \right\}$
- Online: only available tasks are known

Model

- $m \text{ CPUs} \ge k \text{ GPUs}$
- Graph of tasks $T_i : \left\{ \overline{p_i} = \text{CPU time} ; \underline{p_i} = \text{GPU time} \right\}$
- Online: only available tasks are known

Model

- $m \text{ CPUs} \ge k \text{ GPUs}$
- Graph of tasks $T_i : \left\{ \overline{p_i} = \text{CPU time} ; \underline{p_i} = \text{GPU time} \right\}$
- Online: only available tasks are known

Model

- $m \text{ CPUs} \ge k \text{ GPUs}$
- Graph of tasks $T_i : \left\{ \overline{p_i} = \text{CPU time} ; \underline{p_i} = \text{GPU time} \right\}$
- Online: only available tasks are known

Model

- $m \text{ CPUs} \ge k \text{ GPUs}$
- Graph of tasks $T_i : \left\{ \overline{p_i} = \text{CPU time} ; \underline{p_i} = \text{GPU time} \right\}$
- Online: only available tasks are known

Objective: minimize makespan

Example (2 CPUs, 1 GPU)

Model

- $m \text{ CPUs} \ge k \text{ GPUs}$
- Graph of tasks $T_i : \left\{ \overline{p_i} = \text{CPU time} ; \underline{p_i} = \text{GPU time} \right\}$
- Online: only available tasks are known

Objective: minimize makespan

Example (2 CPUs, 1 GPU) $CPU \begin{array}{c} T_{2} \\ T_{1} \\ T_{2} \\ T_{1} \\ T_{2} \\ T_{3} \\ T_{3} \\ T_{4} \\ T_{5} \\ T_{7} \\ T_$

Related work

m CPUs, k GPUs

Existing offline algorithms (NP-Complete)

- Independent tasks:
 - $\frac{4}{3} + \frac{1}{3k}$ approx Expensive PTAS
 - Low-complexity: 2 approx
 - 3.41 approx

DAG: 6 - approx (LP rounding)

[Bonifaci, Wiese 2012]

[Canon, Marchal, Vivien 2017]

[Beaumont, Eyraud-Dubois, Kumar 2017]

[Bleuse, Kedad-Sidhoum, Monna, Mounié, Trystram 2015]

[Kedad-Sidhoum, Monna, Trystram 2015]

Existing online algorithms

Independent tasks: 4 - competitive

3.85 - competitive

[Imreh 2003]

[Chen, Ye, Zhang 2014]

• DAG: $4\sqrt{\frac{m}{k}}$ - compet. ER-LS

[Amarís, Lucarelli, Mommessin, Trystram 2017]

Outline

1 PhD thesis overview

Online scheduling of DAGs on hybrid platforms

Lower bounds

- Competitive algorithms
- Simulations results

3 Parallel scheduling of DAGs under memory constraints

- Model and maximum parallel memory
- Efficient scheduling with bounded memory
- Simulation results

m CPUs, k GPUs

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

Proof (where $\tau = \sqrt{m/k} = 3$): graph built in $n\tau$ phases.

Phase 1 - $k\tau$ independent tasks $\{\overline{p_i} = \tau ; \underline{p_i} = 1\}$: \mathscr{A} needs a time τ

m CPUs, k GPUs

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

Proof (where $\tau = \sqrt{m/k} = 3$): graph built in $n\tau$ phases.

Phase 1 - $k\tau$ independent tasks $\{\overline{p_i} = \tau ; \underline{p_i} = 1\}$: \mathscr{A} needs a time τ Phase 2 - same as phase 1, but are successors of the last task

Graph with k = 2, n = 3

m CPUs, k GPUs

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

Proof (where $\tau = \sqrt{m/k} = 3$): graph built in $n\tau$ phases.

Phase 1 - $k\tau$ independent tasks $\{\overline{p_i} = \tau ; \underline{p_i} = 1\}$: \mathscr{A} needs a time τ Phase 2 - same as phase 1, but are successors of the last task Phase 3 - same as phase 2, but are successors of the last task

Graph with k = 2, n = 3

kτ

m CPUs, k GPUs

Lower bound

Theorem

No online algorithm
$$\mathscr{A}$$
 is $<\sqrt{m/k}$ - competitive for any m, k .

Proof (where $\tau = \sqrt{m/k} = 3$): graph built in $n\tau$ phases.

Phase 1 - $k\tau$ independent tasks $\{\overline{p_i} = \tau ; \underline{p_i} = 1\}$: \mathscr{A} needs a time τ Phase 2 - same as phase 1, but are successors of the last task Phase 3 - same as phase 2, but are successors of the last task Phase \times - ...

 \implies Makespan obtained by $\mathscr{A}: n\tau^2$

Graph with k = 2, n = 3

m CPUs, k GPUs

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

m CPUs, k GPUs

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

m CPUs, k GPUs

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

m CPUs, k GPUs

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

m CPUs, k GPUs

Theorem

No online algorithm \mathscr{A} is $<\sqrt{m/k}$ - competitive for any m, k.

Generalized lower bounds

Recall previous lower bound: $\sqrt{m/k}$, for *m* CPUs, *k* GPUs

Precomputed information

- ▶ Bottom-level (≈ remaining critical path) does not help
- All descendants: non-constant LB = $\Omega((m/k)^{1/4})$

Powerful scheduler

- Kill + migrate does not help
- Preempt + migrate hardly helps

Note: allocation is difficult

- How to choose which tasks to speed-up?
- Fixed allocation: 3 competitiveness

Outline

1 PhD thesis overview

Online scheduling of DAGs on hybrid platforms

Lower bounds

Competitive algorithms

Simulations results

3 Parallel scheduling of DAGs under memory constraints

- Model and maximum parallel memory
- Efficient scheduling with bounded memory
- Simulation results

ER-LS algorithm $(4\sqrt{m/k}$ -competitive, [Amarís et al.])

Main concept

m CPUs, k GPUs

- Pick any available task T_i
- Allocate T_i to CPUs or GPUs
- Schedule it as soon as possible

Where to allocate an available task T_i

If T_i can be completed on GPU before time $\overline{p_i}$:

• put T_i on GPU

Otherwise:

► if
$$\frac{\overline{p_i}}{p_i} \le \sqrt{\frac{m}{k}}$$
: put it on CPU

> else : put it on GPU

Our proposition: QA (Quick Allocation) algorithm

Main concept

m CPUs, k GPUs

- Pick any available task T_i
- Allocate T_i to CPUs or GPUs
- Schedule it as soon as possible

Where to allocate an available task T_i

If T_i can be completed on GPU before time $\overline{p_i}$:

put T; on GPU

Otherwise:

▶ if
$$\frac{\overline{p_i}}{p_i} \le \sqrt{\frac{m}{k}}$$
: put it on CPU

> else : put it on GPU

Our proposition: QA (Quick Allocation) algorithm

m CPUs, k GPUs

Main concept

- Pick any available task T_i
- Allocate T_i to CPUs or GPUs
- Schedule it as soon as possible

Where to allocate an available task T_i

If T_i can be completed on GPU before time $\overline{p_i}$:

put T; on GPU

Otherwise:

▶ if
$$\frac{\overline{p_i}}{\underline{p_i}} \le \sqrt{\frac{m}{k}}$$
: put it on CPU

> else : put it on GPU

Theorem

QA is $2\sqrt{m/k} + 1$ - competitive. This ratio is (almost) tight.

What about *easy* cases?

Problem with **QA**

m CPUs, k GPUs

- Expect the worse: aim at $\Theta(\sqrt{m/k})$ -competitiveness
- Poor performance on easy graphs

Well-known **EFT** algorithm (Earliest Finish Time)

- Terminate each T_i as soon as possible;
- Greedy version, works great on non-pathological cases
- \bigcirc Can be really bad: $\geq \left(\frac{m}{k} + 2\right)$ OPT

Can we have both benefits? MIXEFT

- ▶ Run EFT and simulate QA; When EFT is λ times worse than QA: switch to QA;
- ► Tunable: $\lambda = 0 \rightarrow QA$; $\lambda = \infty \rightarrow EFT$
- $(\lambda + 1)(2\sqrt{m/k} + 1)$ -competitive conjectured max $(\lambda, 2\sqrt{m/k} + 1)$
- Same idea as ER-LS but pushed to the extreme

Outline

1 PhD thesis overview

Online scheduling of DAGs on hybrid platforms

- Lower bounds
- Competitive algorithms
- Simulations results

3 Parallel scheduling of DAGs under memory constraints

- Model and maximum parallel memory
- Efficient scheduling with bounded memory
- Simulation results

Simulations

m CPUs, k GPUs

Heuristics (makespan normalized by offline HEFT's)

- EFT (= MIXEFT as EFT better than QA here)
- QA (switch at $\sqrt{m/k}$)
- ER-LS (= QA + greedy rule: slightly more tasks on GPUs)
- QUICKEST (= QA with switch at 1: more tasks on GPUs)
- **RATIO** (= QA with switch at m/k: more tasks on CPUs)

Datasets for m = 20 **CPUs and** k = 2 **GPUs**

Cholesky 4 types of tasks Synthetic STG set, 300 tasks, random GPU acceleration ($\mu = \sigma = 15$) Ad-hoc one chain & independent tasks
Results for Cholesky graphs (lower is better)

m CPUs, k GPUs

Results for synthetic graphs (lower is better)

Results for 300-tasks ad-hoc graphs (lower is better)

Conclusion of this project

m CPUs, k GPUs

Summary

- ► No online algo. is <√m/k competitive Additional knowledge or power hardly helps
- QA: $(2\sqrt{m/k} + 1)$ competitive MIXEFT: compromise effectiveness / guarantees
- Extended to multiple types of processors (not in this talk)

Perspectives

- Low-cost offline algorithm with constant ratio
- Communication times
- Parallel tasks

Outline

1 PhD thesis overview

Online scheduling of DAGs on hybrid platforms

- Lower bounds
- Competitive algorithms
- Simulations results

Parallel scheduling of DAGs under memory constraints

- Model and maximum parallel memory
- Efficient scheduling with bounded memory
- Simulation results

Parallel scheduling of DAGs under memory constraints

DAGs of tasks

- Describe many applications
- Used by increasingly popular runtime schedulers (XKAAPI, StarPU, StarSs, ParSEC, ...)

Parallel scheduling

Many tasks executed concurrently

Limited available memory (shared-memory platform)

Simple breadth-first traversal may go out-of-memory

Objective

Prevent dynamic schedulers from exceeding memory

Outline

1 PhD thesis overview

Online scheduling of DAGs on hybrid platforms

- Lower bounds
- Competitive algorithms
- Simulations results

Parallel scheduling of DAGs under memory constraints

- Model and maximum parallel memory
- Efficient scheduling with bounded memory
- Simulation results

Task graph weights

Vertex w_i: estimated task duration

Task graph weights

Vertex w_i: estimated task duration

Simple memory model

- Task starts: free inputs (instantaneously) allocate outputs
- Task ends: outputs stay in memory

Task graph weights

Vertex w_i: estimated task duration

Simple memory model

- Task starts: free inputs (instantaneously) allocate outputs
- Task ends: outputs stay in memory

Task graph weights

Vertex w_i: estimated task duration

Simple memory model

- Task starts: free inputs (instantaneously) allocate outputs
- Task ends: outputs stay in memory

Task graph weights

Vertex w_i: estimated task duration

Simple memory model

- Task starts: free inputs (instantaneously) allocate outputs
- Task ends: outputs stay in memory

Task graph weights

Vertex w_i: estimated task duration

Simple memory model

- Task starts: free inputs (instantaneously) allocate outputs
- Task ends: outputs stay in memory

Task graph weights

Vertex w_i: estimated task duration

Simple memory model

- Task starts: free inputs (instantaneously) allocate outputs
- Task ends: outputs stay in memory

Emulation of other memory behaviours

Inputs not freed, additional execution memory: duplicate nodes

Task graph weights

Vertex w_i: estimated task duration

Simple memory model

- Task starts: free inputs (instantaneously) allocate outputs
- Task ends: outputs stay in memory

Emulation of other memory behaviours

- Inputs not freed, additional execution memory: duplicate nodes
- Shared data: output data of A used for both B and C

Computing the maximum memory peak

Two equivalent quantities (in our model)

- Maximum memory peak of any parallel execution
- Maximum weight of a topological cut

Topological cut: (S, T) with

- Source $s \in S$ and sink $t \in T$
- ▶ No edge from *T* to *S*
- Weight of the cut = sum of all edge weights from S to T

Computing the maximum memory peak

Two equivalent quantities (in our model)

- Maximum memory peak of any parallel execution
- Maximum weight of a topological cut

Topological cut: (S, T) with

- Source $s \in S$ and sink $t \in T$
- ▶ No edge from *T* to *S*
- Weight of the cut = sum of all edge weights from S to T

Topological cut \longleftrightarrow execution state where T nodes are not started yet

Computing the maximum topological cut

Literature

- Minimum cut is polynomial on graphs
- Maximum cut is NP-hard even on DAGs [Lampis et al. 2011]
- Not much for topological cuts

Theorem

Computing the maximum topological cut on a DAG is polynomial.

Maximum topological cut – using LP

A classical min-cut LP formulation

$$\min \sum_{(i,j)\in E} m_{i,j}d_{i,j}$$
$$\forall (i,j)\in E, \quad d_{i,j} \ge p_i - p_j$$
$$d_{i,j} \ge 0$$
$$p_s = 1, \quad p_t = 0$$

► Any graph: integer solution ⇔ cut

Maximum topological cut – using LP

A classical min-cut LP formulation

$$\max \sum_{(i,j)\in E} m_{i,j} d_{i,j}$$
$$\forall (i,j)\in E, \quad d_{i,j} = p_i - p_j$$
$$d_{i,j} \ge 0$$
$$p_s = 1, \quad p_t = 0$$

- ► Any graph: integer solution ⇔ cut
- ▶ Modify LP: 'min' \rightarrow 'max' ; '≥' \rightarrow '='

Maximum topological cut – using LP

A classical min-cut LP formulation

$$\max \sum_{(i,j)\in E} m_{i,j} d_{i,j}$$

$$\forall (i,j)\in E, \quad d_{i,j} = p_i - p_j$$

$$d_{i,j} \ge 0$$

$$p_s = 1, \quad p_t = 0$$

- Any graph: integer solution \iff cut
- ▶ Modify LP: 'min' \rightarrow 'max' ; '≥' \rightarrow '='

In a DAG, any (non-integer) optimal solution \Rightarrow max. top. cut

• Any rounding of the p_i 's works (large $\in S$, small $\in T$)

 $F_{i,i}$

Maximum topological cut – direct algorithm

- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

Maximum topological cut – direct algorithm

- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

Maximum topological cut – direct algorithm

- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

Maximum topological cut – direct algorithm

- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

Outline

1 PhD thesis overview

Online scheduling of DAGs on hybrid platforms

- Lower bounds
- Competitive algorithms
- Simulations results

Parallel scheduling of DAGs under memory constraints

Model and maximum parallel memory

Efficient scheduling with bounded memory

Simulation results

Coping with limited memory

Problem

- Allow use of dynamic schedulers
- Limited available memory M
- Keep high level of parallelism

Coping with limited memory

Problem

- Allow use of dynamic schedulers
- Limited available memory M
- Keep high level of parallelism

Our solution

- \blacktriangleright Add edges to guarantee that any parallel execution stays below M
- Minimize the obtained critical path

Coping with limited memory

Problem

- Allow use of dynamic schedulers
- Limited available memory M
- Keep high level of parallelism

Our solution

- \blacktriangleright Add edges to guarantee that any parallel execution stays below M
- Minimize the obtained critical path

Problem definition and complexity

Definition (PARTIAL SERIALIZATION of a DAG G under a memory M)

Compute a set of new edges E' such that:

- $G' = (V, E \cup E')$ is a DAG
- MaxTopologicalCut(G') ≤ M
- CritPath(G') is minimized

Theorem (Sethi 1975)

Computing a schedule that minimizes the memory usage is NP-hard.

Theorem

PARTIALSERIALIZATION is NP-hard given a memory-efficient schedule.

Optimal solution computable by an ILP (builds transitive closure)

Several heuristic choices for Step 3

Several heuristic choices for Step 3

Several heuristic choices for Step 3

Several heuristic choices for Step 3

Several heuristic choices for Step 3

Several heuristic choices for Step 3
Outline

1 PhD thesis overview

Online scheduling of DAGs on hybrid platforms

- Lower bounds
- Competitive algorithms
- Simulations results

Parallel scheduling of DAGs under memory constraints

- Model and maximum parallel memory
- Efficient scheduling with bounded memory
- Simulation results

Dense DAGGEN random graphs (25, 50, and 100 nodes)

- $Heuristic \ \buildrel MinLevels \ \buildrel RespectOrder \ \buildrel MaxMinSize \ \buildrel MaxSize \ \buildrel ILP \ \buildrel MaxSize \ \buil$
- x: memory (0 = DFS, 1 = MaxTopCut) median ratio MaxTopCut / DFS ≈ 1.3
- y: $CP / original CP \rightarrow lower is better$
- MinLevels performs best

Sparse DAGGEN random graphs (25, 50, and 100 nodes)

Heuristic 🖨 MinLevels 🚍 RespectOrder 🖨 MaxMinSize 🛱 MaxSize

- x: memory (0 = DFS, 1 = MaxTopCut) median ratio MaxTopCut / DFS ≈ 2
- y: $CP / original CP \rightarrow lower is better$
- MinLevels performs best, but might fail

Simulations – Pegasus workflows (LIGO 100 nodes)

Heuristic \rightleftharpoons MinLevels \rightleftharpoons RespectOrder \rightleftharpoons MaxMinSize \rightleftharpoons MaxSize

- Median ratio MaxTopCut / DFS ≈ 20
- MinLevels performs best, RespectOrder always succeeds
- Memory divided by 5 for CP multiplied by 3

Conclusion of this project

Memory model proposed

- Simple but expressive
- Explicit algorithm to compute maximum memory

Prevent dynamic schedulers from exceeding memory

- Adding fictitious dependences to limit memory usage
- Critical path as a performance metric
- Several heuristics (+ ILP)

Perspectives

- Reduce heuristic complexity
- Adapt performance metric to a platform
- Distributed memory