Parallel Scheduling of DAGs Under Memory Constraints

Loris Marchal, Hanna Nagy, Bertrand Simon & Frédéric Vivien

ENS de Lyon, France

IPDPS — Vancouver 2018

Breaking down the title

DAGs of tasks

- Describe many applications
- Used by increasingly popular runtime schedulers (XKAAPI, StarPU, StarSs, ParSEC, ...)

Parallel scheduling

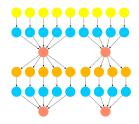
Many tasks executed concurrently

Limited available memory (shared-memory platform)

Simple breadth-first traversal may go out-of-memory

Objective

Prevent dynamic schedulers from exceeding memory



Outline

1 Model and maximum parallel memory

- Memory model
- Maximum parallel memory/maximal topological cut

2 Efficient scheduling with bounded memory

- Problem definition
- Complexity
- Heuristics

3 Simulation results

Task graph weights

Vertex w_i: estimated task duration

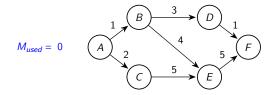
▶ Edge *m_{i,j}* : data size

Task graph weights

Vertex w_i: estimated task duration

Simple memory model

- Task starts: free inputs (instantaneously) allocate outputs
- Task ends: outputs stay in memory



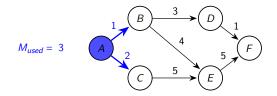
Edge m_{i,i}: data size

Task graph weights

Vertex w_i: estimated task duration

Simple memory model

- Task starts: free inputs (instantaneously) allocate outputs
- Task ends: outputs stay in memory



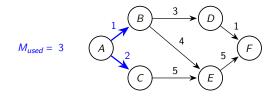
Edge m_{i,j}: data size

Task graph weights

Vertex w_i: estimated task duration

Simple memory model

- Task starts: free inputs (instantaneously) allocate outputs
- Task ends: outputs stay in memory



► Edge m_{i,j}: data size

Edge m_{i,i}: data size

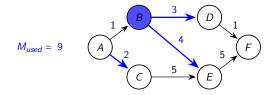
Memory model

Task graph weights

Vertex w_i: estimated task duration

Simple memory model

- Task starts: free inputs (instantaneously) allocate outputs
- Task ends: outputs stay in memory



Edge m_{i,i}: data size

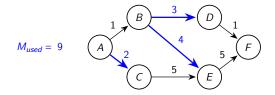
Memory model

Task graph weights

Vertex w_i: estimated task duration

Simple memory model

- Task starts: free inputs (instantaneously) allocate outputs
- Task ends: outputs stay in memory



Task graph weights

Vertex w_i: estimated task duration

Simple memory model

- Task starts: free inputs (instantaneously) allocate outputs
- Task ends: outputs stay in memory

Emulation of other memory behaviours

Inputs not freed, additional execution memory: duplicate nodes

▶ Edge m_{i,j} : data size

Edge m_{i,i}: data size

Memory model

Task graph weights

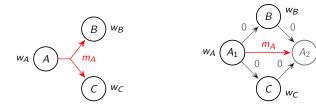
Vertex w_i: estimated task duration

Simple memory model

- Task starts: free inputs (instantaneously) allocate outputs
- Task ends: outputs stay in memory

Emulation of other memory behaviours

- Inputs not freed, additional execution memory: duplicate nodes
- Shared data: output data of A used for both B and C



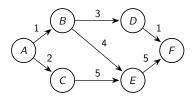
Computing the maximum memory peak

Two equivalent quantities (in our model)

- Maximum memory peak of any parallel execution
- Maximum weight of a topological cut

Topological cut: (S, T) with

- Source $s \in S$ and sink $t \in T$
- ▶ No edge from *T* to *S*
- Weight of the cut = sum of all edge weights from S to T



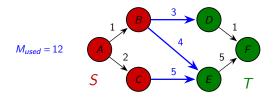
Computing the maximum memory peak

Two equivalent quantities (in our model)

- Maximum memory peak of any parallel execution
- Maximum weight of a topological cut

Topological cut: (S, T) with

- Source $s \in S$ and sink $t \in T$
- No edge from T to S
- Weight of the cut = sum of all edge weights from S to T



Topological cut \leftrightarrow execution state where T nodes are not started yet

Computing the maximum topological cut

Literature

- Minimum cut is polynomial on graphs
- Maximum cut is NP-hard even on DAGs [Lampis et al. 2011]
- Not much for topological cuts

Theorem [Variable]

Computing the maximum topological cut on a DAG is polynomial.

Maximum topological cut – using LP

A classical min-cut LP formulation

$$\min \sum_{(i,j)\in E} m_{i,j}d_{i,j}$$
$$\forall (i,j)\in E, \quad d_{i,j} \ge p_i - p_j$$
$$d_{i,j} \ge 0$$
$$p_s = 1, \quad p_t = 0$$

• Any graph: integer solution \iff cut

Maximum topological cut – using LP

A classical min-cut LP formulation

$$\max \sum_{(i,j)\in E} m_{i,j}d_{i,j}$$
$$\forall (i,j)\in E, \quad d_{i,j} = p_i - p_j$$
$$d_{i,j} \ge 0$$
$$p_s = 1, \quad p_t = 0$$

- ► Any graph: integer solution ⇔ cut
- ▶ Modify LP: 'min' \rightarrow 'max' ; '≥' \rightarrow '='

Maximum topological cut – using LP

A classical min-cut LP formulation

$$\max \sum_{(i,j)\in E} m_{i,j} d_{i,j}$$

$$\forall (i,j)\in E, \quad d_{i,j} = p_i - p_j$$

$$d_{i,j} \ge 0$$

$$p_s = 1, \quad p_t = 0$$

- Any graph: integer solution \iff cut
- ▶ Modify LP: 'min' \rightarrow 'max' ; '≥' \rightarrow '='

In a DAG, any (non-integer) optimal solution \Rightarrow max. top. cut

• Any rounding of the p_i 's works (large $\in S$, small $\in T$)

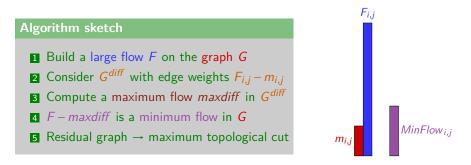
- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

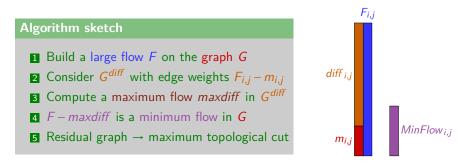
- $\blacksquare Build a large flow F on the graph G$
- **2** Consider G^{diff} with edge weights $F_{i,j} m_{i,j}$
- **3** Compute a maximum flow *maxdiff* in *G*^{diff}
- 4 F maxdiff is a minimum flow in G
- **5** Residual graph \rightarrow maximum topological cut

m_{i,j}

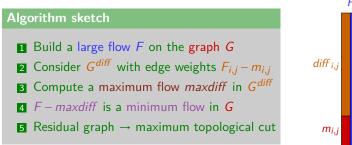
- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

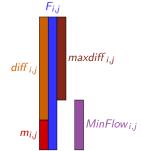


- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

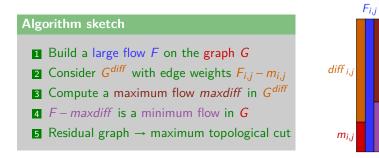


- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow





- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow



Complexity: same as maximum flow, e.g., $O(|V|^2|E|)$

MinFlow ;;;

Outline

Model and maximum parallel memory

- Memory model
- Maximum parallel memory/maximal topological cut

2 Efficient scheduling with bounded memory

- Problem definition
- Complexity
- Heuristics

3 Simulation results

4 Conclusion

Coping with limited memory

Problem

- Allow use of dynamic schedulers
- Limited available memory M
- Keep high level of parallelism

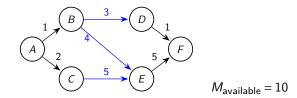
Coping with limited memory

Problem

- Allow use of dynamic schedulers
- Limited available memory M
- Keep high level of parallelism

Our solution

- ► Add edges to guarantee that any parallel execution stays below M
- Minimize the obtained critical path



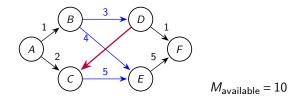
Coping with limited memory

Problem

- Allow use of dynamic schedulers
- Limited available memory M
- Keep high level of parallelism

Our solution

- ► Add edges to guarantee that any parallel execution stays below M
- Minimize the obtained critical path



10 / 17

Problem definition and complexity

Definition (PARTIAL SERIALIZATION of a DAG G under a memory M)

Compute a set of new edges E' such that:

- $G' = (V, E \cup E')$ is a DAG
- MaxTopologicalCut(G') ≤ M
- CritPath(G') is minimized

Theorem (Sethi 1975)

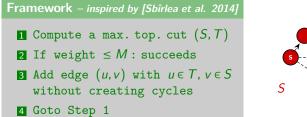
Computing a schedule that minimizes the memory usage is NP-hard.

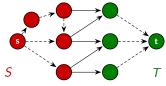
 \implies finding a DAG G' with MaxTopologicalCut(G') $\leq M$ is NP-hard

Theorem

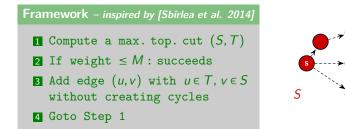
PARTIALSERIALIZATION is NP-hard given a memory-efficient schedule.

Optimal solution computable by an ILP (builds transitive closure)

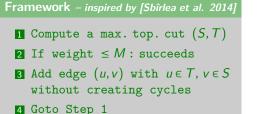


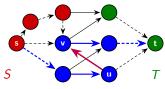


Several heuristic choices for Step 3

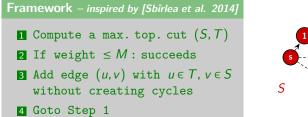


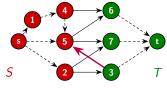
Several heuristic choices for Step 3



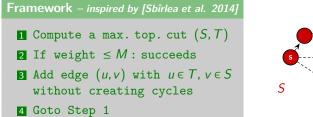


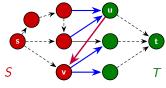
Several heuristic choices for Step 3



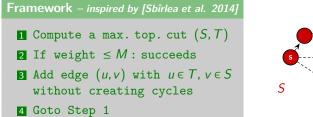


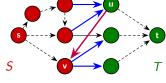
Several heuristic choices for Step 3





Several heuristic choices for Step 3





Several heuristic choices for Step 3

Outline

Model and maximum parallel memory

- Memory model
- Maximum parallel memory/maximal topological cut

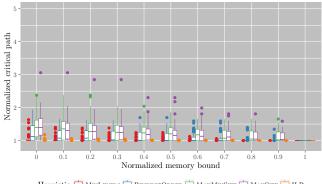
2 Efficient scheduling with bounded memory

- Problem definition
- Complexity
- Heuristics

③ Simulation results

4 Conclusion

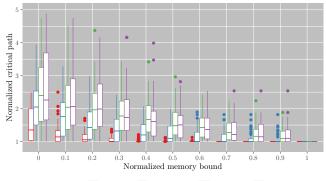
Dense DAGGEN random graphs (25, 50, and 100 nodes)



 $Heuristic \ \buildrel MinLevels \ \buildrel RespectOrder \ \buildrel MaxMinSize \ \buildrel MaxSize \ \buildrel ILP \ \buildrel MaxSize \ \buildrel ILP \ \buildrel MaxSize \ \buildrel$

- x: memory (0 = DFS, 1 = MaxTopCut) median ratio MaxTopCut / DFS ≈ 1.3
- y: $CP / original CP \rightarrow lower is better$
- MinLevels performs best

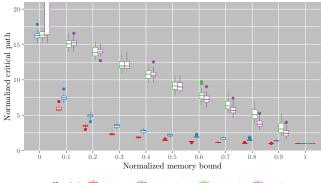
Sparse DAGGEN random graphs (25, 50, and 100 nodes)



Heuristic \rightleftharpoons MinLevels \rightleftharpoons RespectOrder \rightleftharpoons MaxMinSize \rightleftharpoons MaxSize

- x: memory (0 = DFS, 1 = MaxTopCut) median ratio MaxTopCut / DFS ≈ 2
- y: $CP / original CP \rightarrow lower is better$
- MinLevels performs best, but might fail

Simulations – Pegasus workflows (LIGO 100 nodes)



Heuristic \rightleftharpoons MinLevels \rightleftharpoons RespectOrder \rightleftharpoons MaxMinSize \rightleftharpoons MaxSize

- Median ratio MaxTopCut / DFS ≈ 20
- MinLevels performs best, RespectOrder always succeeds
- Memory divided by 5 for CP multiplied by 3

Outline

Model and maximum parallel memory

- Memory model
- Maximum parallel memory/maximal topological cut

2 Efficient scheduling with bounded memory

- Problem definition
- Complexity
- Heuristics

3 Simulation results

Conclusion

Memory model proposed

- Simple but expressive
- Explicit algorithm to compute maximum memory

Prevent dynamic schedulers from exceeding memory

- Adding fictitious dependences to limit memory usage
- Critical path as a performance metric
- Several heuristics (+ ILP)

Perspectives

- Reduce heuristic complexity
- Adapt performance metric to a platform
- Distributed memory