ski

Bertrand Simon

part of a joint work with: Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Singh, Zage

ENS Lyon

Jan. 2018

Cache-efficient skip lists

Bertrand Simon

part of a joint work with: Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Singh, Zage

ENS Lyon

Jan. 2018

2 External Memory

3 External-memory skip list

The problem we want to solve

Dictionary problem on $\ensuremath{\mathbb{N}}$

- Insert i
- Delete i
- Search i
- Range Query (i, k elements)

Example

Insert 26; Insert 8; Insert 4; Insert 17; Insert 42; Insert 1664; Delete 4; Search 26; Delete 26; Insert 58; Insert 2; Search 26; $RQ(8,4) \rightarrow [8; 17; 42; 58];$

Performance we seek (*n* elements in the set)

- Insert, Delete, Search:
- Range Query:

The problem we want to solve

Dictionary problem on $\ensuremath{\mathbb{N}}$

- Insert i
- Delete i
- Search i
- Range Query (i, k elements)

Example

Insert 26; Insert 8; Insert 4; Insert 17; Insert 42; Insert 1664; Delete 4; Search 26; Delete 26; Insert 58; Insert 2; Search 26; $RQ(8,4) \rightarrow [8; 17; 42; 58];$

Performance we seek (n elements in the set)

- ▶ Insert, Delete, Search: $O(\log n)$
- Range Query: $\mathcal{O}(k + \log n)$

The problem we want to solve

Dictionary problem on $\ensuremath{\mathbb{N}}$

- Insert i
- Delete i
- Search i
- Range Query (i, k elements)

Example

Insert 26; Insert 8; Insert 4; Insert 17; Insert 42; Insert 1664; Delete 4; Search 26; Delete 26; Insert 58; Insert 2; Search 26; $RQ(8,4) \rightarrow [8; 17; 42; 58];$

Performance we seek (n elements in the set)

- ▶ Insert, Delete, Search: $O(\log n)$
- Range Query: $O(k + \log n)$

Famous data structures solve this

Self-balancing binary search trees (AVL, Red-black tree...)

Red-black trees also solve this problem but...

- Red-Black tree invented in 1972 [Bayer]
 Improved in 1993, 1999, 2001, 2008, 2011
- Who can implement right now a red-black tree?

Red-black trees also solve this problem but...

- Red-Black tree invented in 1972 [Bayer]
 Improved in 1993, 1999, 2001, 2008, 2011
- Who can implement right now a red-black tree?

"Skip lists are simpler, faster and use less space" - W. Pugh, 1989.

Red-black trees also solve this problem but...

- Red-Black tree invented in 1972 [Bayer]
 Improved in 1993, 1999, 2001, 2008, 2011
- Who can implement right now a red-black tree?

```
"Skip lists are simpler, faster and use less space"
- W. Pugh, 1989.
```

Advantage: history independence

Reveals nothing on the past: deletes, searches, order of operations...

Red-black trees also solve this problem but...

- Red-Black tree invented in 1972 [Bayer]
 Improved in 1993, 1999, 2001, 2008, 2011
- Who can implement right now a red-black tree?

```
"Skip lists are simpler, faster and use less space"
- W. Pugh, 1989.
```

Advantage: history independence

Reveals nothing on the past: deletes, searches, order of operations...

More

- Easy concurrency
- fun, elegant, teaches probabilities...

From a simple list to skip lists

Properties

- Maintain a sorted list of the elements
- Support operations in O (log n) in expectation and with high probability (≈ worst-case analysis)

From a simple list to skip lists

Properties

- Maintain a sorted list of the elements
- Support operations in O (log n) in expectation and with high probability (≈ worst-case analysis)

Definition of $O(\log n)$ with high probability

- ► $\forall c$ large, with proba $1 n^{-\Omega(c)}$, all operations cost $< c \log n$
- Ex: n = 1000, $1 10^{-9}$ < $3 \log n$

From a simple list to skip lists

Properties

- Maintain a sorted list of the elements
- Support operations in O (log n) in expectation and with high probability (≈ worst-case analysis)

Definition of $O(\log n)$ with high probability

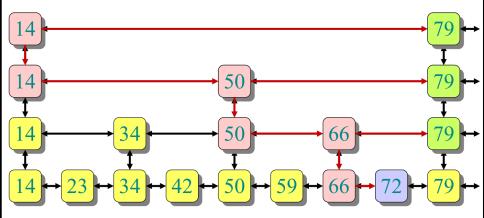
- ► $\forall c$ large, with proba $1 n^{-\Omega(c)}$, all operations cost $< c \log n$
- Ex: n = 1000, $1 10^{-9}$ < $3 \log n$

Description of ideal skip lists without updates

On the board

Searching in lg *n* linked lists

EXAMPLE: SEARCH(72)



Updating ideal skip lists: expensive

Now rely on probabilities...

Updating ideal skip lists: expensive

Now rely on probabilities...

Delete *i*

Search i, delete i from all lists

Updating ideal skip lists: expensive

Now rely on probabilities...

Delete *i*

Search i, delete i from all lists

Insert *i*

- Search i, insert i at the bottom list
- ▶ Toss a coin: Head \rightarrow Return() Tail \rightarrow insert *i* one level higher

Updating ideal skip lists: expensive

Now rely on probabilities...

Delete *i*

Search i, delete i from all lists

Insert *i*

- Search i, insert i at the bottom list
- ▶ Toss a coin: Head \rightarrow Return() Tail \rightarrow insert *i* one level higher
- ▶ Toss a coin: Head \rightarrow Return() Tail \rightarrow insert *i* one level higher

Updating ideal skip lists: expensive

Now rely on probabilities...

Delete i

Search i, delete i from all lists

Insert *i*

- Search i, insert i at the bottom list
- ▶ Toss a coin: Head \rightarrow Return() Tail \rightarrow insert *i* one level higher
- ▶ Toss a coin: Head \rightarrow Return() Tail \rightarrow insert *i* one level higher
- ▶ Toss a coin: Head \rightarrow Return() Tail \rightarrow insert *i* one level higher ▶ ...

Updating ideal skip lists: expensive

Now rely on probabilities...

Delete i

Search i, delete i from all lists

Insert *i*

- Search i, insert i at the bottom list
- ▶ Toss a coin: Head \rightarrow Return() Tail \rightarrow insert *i* one level higher
- ▶ Toss a coin: Head \rightarrow Return() Tail \rightarrow insert *i* one level higher
- ▶ Toss a coin: Head \rightarrow Return() Tail \rightarrow insert *i* one level higher ▶ ...

Do you see something missing?

Theorem

A skip list has $\mathcal{O}(\log n)$ levels whp.

Proof.

 $\mathcal{P}(> c \log n \text{ levels}) \leq n \cdot \mathcal{P}(\text{Insert gets} > c \log n \text{ promotions})$

$$\leq n \cdot \left(\frac{1}{2}\right)^{c \log n} \\ \leq n^{1-c}$$

Theorem

A search costs $\mathcal{O}(\log n)$ whp.

Theorem

A search costs $O(\log n)$ whp.

Proof.

Analyze it backwards (from bottom to top-left)

- if the node was promoted: go up (proba. 1/2)
- ▶ otherwise: go left (proba. 1/2)
- we stop after $< c \log n$ "up" moves

Whp, after how many moves do we stop? Answer:

Theorem

A search costs $\mathcal{O}(\log n)$ whp.

Lemma

To obtain $c \log n$ Heads, we need $\Theta(\log n)$ coin flips whp.

Proof.

Analyze it backwards (from bottom to top-left)

- ▶ if the node was promoted: go up (proba. 1/2)
- ▶ otherwise: go left (proba. 1/2)
- ▶ we stop after < c log n "up" moves</p>

Whp, after how many moves do we stop? Answer:

Theorem

A search costs $\mathcal{O}(\log n)$ whp.

Lemma

To obtain $c \log n$ Heads, we need $\Theta(\log n)$ coin flips whp.

Proof.

Analyze it backwards (from bottom to top-left)

- ▶ if the node was promoted: go up (proba. 1/2)
- ▶ otherwise: go left (proba. 1/2)
- ▶ we stop after < c log n "up" moves</p>

Whp, after how many moves do we stop? Answer: $\Theta(\log n)$

2 External Memory

3 External-memory skip list

Forget everything you know

Classic RAM model used to evaluate algorithm

- Memory access (read, write)
 Computation (compare, add, multiply...)

Bertrand Simon

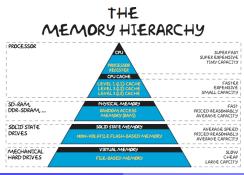
cost 1

Forget everything you know

Classic RAM model used to evaluate algorithm

- Memory access (read, write)
- Computation (compare, add, multiply...)

Problem when dealing with large data



A new model

Change of view

- Classic complexity (RAM model): focus on computations
- Disk-Access Model [Aggarwal'88] : focus on communications

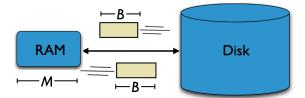
A new model

Change of view

- Classic complexity (RAM model): focus on computations
- Disk-Access Model [Aggarwal'88] : focus on communications

Model

- ▶ Two layers of memory: a main RAM of size *M* and an infinite disk
- Data needs to be on RAM to be processed
- Can exchange contiguous blocks of size B for 1 I/O



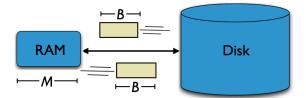
A new model

Change of view

- Classic complexity (RAM model): focus on computations
- Disk-Access Model [Aggarwal'88] : focus on communications

Model

- ▶ Two layers of memory: a main RAM of size *M* and an infinite disk
- Data needs to be on RAM to be processed
- Can exchange contiguous blocks of size B for 1 I/O
- ► Complexity of an algorithm: worst-case I/O number



Why are I/Os so important?

Large data: classic algorithms access frequently to disk

Access time

- RAM: 100 ns
- Disk: 10 ms = 10 000 000 ns

Why are I/Os so important?

Large data: classic algorithms access frequently to disk

Access time

RAM: 100 ns

 $\blacktriangleright \text{ Analogy: } \frac{\text{Ram speed}}{\text{Disk speed}} \approx \frac{\text{escape velocity from Earth}}{\text{speed of a turtle}}$

DAM model: totally forget computations

Classic bounds

	RAM	DAM (I/Os)
Scan	N	
Search	log N	
Merge-Sort	N log N	

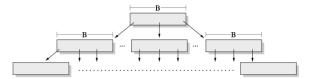
Classic bounds

	RAM	DAM (I/Os)
Scan	N	$\frac{N}{B}$
Search	log N	
Merge-Sort	N log N	

Classic bounds

	RAM	DAM (I/Os)
Scan	N	$\frac{N}{B}$
Search	log N	log _B N
Merge-Sort	N log N	

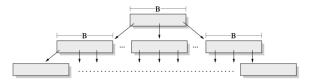
External memory Search tree: B-tree



Classic bounds

	RAM	DAM (I/Os)
Scan	N	$\frac{N}{B}$
Search	log N	log _B N
Merge-Sort	N log N	$\frac{N}{B}\log_{M/B}\frac{N}{B}$

External memory Search tree: B-tree



2 External Memory

Skip lists and external memory

Why it does not work straight away

- RAM Insert: any memory slot
- Each operation requires Θ(log N) I/Os

Skip lists and external memory

Why it does not work straight away

- RAM Insert: any memory slot
- Each operation requires $\Theta(\log N) I/Os$
- ► We want the same as B-tree: $O(\log_B N)$ I/Os — RQ: $O(\log_B N + k/B)$ I/Os

Any idea to improve locality? (& keep history-independence)

Skip lists and external memory

Why it does not work straight away

- RAM Insert: any memory slot
- Each operation requires $\Theta(\log N) I/Os$
- ► We want the same as B-tree: $O(\log_B N)$ I/Os — RQ: $O(\log_B N + k/B)$ I/Os

Any idea to improve locality? (& keep history-independence)

- Block together elements between 2 promoted ones
- Change the promotion probability

If p > 1/B

Range queries are not efficient

If p > 1/B

Range queries are not efficient

If p < 1/B

Searches have to span several blocks

If p > 1/B

Range queries are not efficient

If p < 1/B

- Searches have to span several blocks
- If p = 1/B [Golovin'2010]
 - OK on average

If p > 1/B

Range queries are not efficient

If p < 1/B

Searches have to span several blocks

If p = 1/B [Golovin'2010]

- OK on average
- Whp: \sqrt{N} series of $B \log N$ non-promoted elements
- For $> \sqrt{N}$ elements, a search costs $\Omega(\log N)$ I/Os

Towards our skip list

Promotion probability

▶
$$\frac{\log B}{B} (ex: $p = B^{-0.7}$) \longrightarrow searches OK on average$$

▶ largest series: $\langle B \log_B N \text{ whp} \longrightarrow O(\log_B N) | / \text{Os for searches}$

Blocking strategy

- \blacktriangleright Block between doubly-promoted elements \longrightarrow Range Queries
- \blacktriangleright Reserve buffers between promoted elements $\longrightarrow~$ Updates

More

Some tricks to ensure all bounds whp & history independence

Example of our skip list for B = 3 and p = 1/2

