Minimizing I/Os in Out-of-Core Task Tree Scheduling

Loris Marchal¹ Samuel McCauley² **Bertrand Simon**¹ Frédéric Vivien¹

CNRS, INRIA, ENS Lyon and Univ. Lyon, France.
IT University Copenhagen, Denmark.

APDCM - Orlando - May 2017

Motivation

Scientific application workflows

- ▶ Described as DAGs: nodes = tasks, edges = dependencies
- Can be a tree (multifrontal sparse matrix factorization)

Focus on the memory needs

- ▶ Larger memory footprint: may not fit in main memory
- Resort to storing some files on disk: out-of-core execution
- Expensive disk access delays the execution
- Scheduling choices impact memory usage

Objective: Minimize I/Os while scheduling a tree-shaped workflow

Motivation

Scientific application workflows

- ▶ Described as DAGs: nodes = tasks, edges = dependencies
- Can be a tree (multifrontal sparse matrix factorization)

Focus on the memory needs

- ▶ Larger memory footprint: may not fit in main memory
- ▶ Resort to storing some files on disk: out-of-core execution
- Expensive disk access delays the execution
- Scheduling choices impact memory usage

Objective: Minimize I/Os while scheduling a tree-shaped workflow

Ultimate goal: parallel processing

- Problem: sequential case not well understood yet
- ▶ Our contribution: step towards its understanding

Problem modeling

Task tree

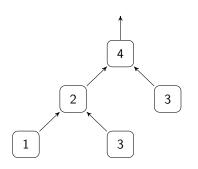
- ▶ Tree G = (V, E), each node has a single parent, |V| = n
- \triangleright Output file of a node i: size w_i (integer number of slots)
- ▶ A node must be executed after all its children

Memory model

- ▶ Main memory of size *M*, infinite disk
- ► Can move a slot to disk at unit cost: 1 I/O

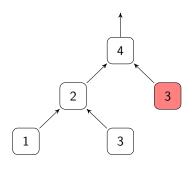
Memory Management when a node is executed

- Children' output files stored in main memory
- Directly replaced by the node's output file (never coexist)



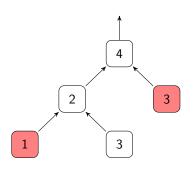
Memory: 0 / 5

Disk: 0



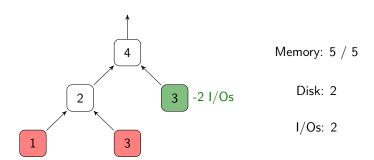
Memory: 3 / 5

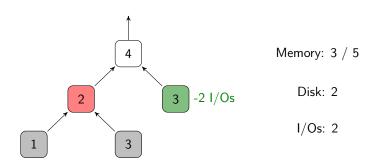
Disk: 0

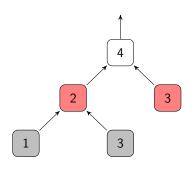


Memory: 4 / 5

Disk: 0

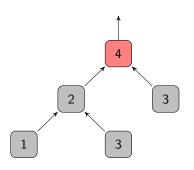






Memory: 5 / 5

Disk: 0



Memory: 4 / 5

Disk: 0

Model motivation

Other models used in the literature

- Input and output files coexist
- Additional memory used during execution
- Describe more accurately the reality

Advantages of this model [Liu 1986, 1987]

- Simpler theoretic study
- Previous models can be simulated by this one

Description of a solution

Traversal

- ▶ Schedule σ : $\sigma(i) = t$ if task i is the t- th executed
- ▶ I/O function τ : output file of task i has $\tau(i)$ slots written to disk
- Assume wlog that the data is written to disk ASAP and read ALAP

Validity of a traversal

- Schedule respects precedences
- ▶ I/Os consistent: $\tau(i) \leq w_i$
- ▶ The main memory (size M) is never exceeded, $\forall i \in V$:

$$\left(\sum_{\substack{(k,p)\in E\\\sigma(k)<\sigma(j)<\sigma(p)}} (w_k-\tau(k))\right) + \max\left(w_i, \sum_{(j,i)\in E} w_j\right) \leq M$$

Objective

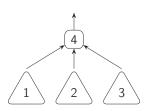
The MINIO problem

Given a tree G and a memory limit M, find a valid traversal that minimizes the total amount of I/Os $(= \sum \tau(i))$.

Lemma: knowing the optimal σ or τ is enough

An interesting subclass: postorder traversals

- ▶ Fully process a subtree before starting a new one
- Completely characterized by the execution order of subtrees
- ▶ Widely used in sparse matrix softwares (e.g., MUMPS, QR-MUMPS)



Related work

Peak memory minimization [Liu 1986, 1987]

- ▶ Optimal Postorder algorithm: PostOrderMinMem in $\mathcal{O}(n \log n)$
- ▶ Optimal algorithm MINMEMALGO in $\mathcal{O}(n^2)$

Minimizing I/Os without splitting files [Jacquelin et al. 2011]

- ▶ Implies combinatorial choices: NP-complete
- lacktriangleright NP-complete even restricted to postorders, or with σ known

Model similar to ours [Agullo et al. 2010]

- ▶ Optimal Postorder algorithm PostOrderMinIO in $O(n \log n)$
- Did not consider the general problem

Postorder traversals are optimal on Homogeneous trees

Theorem

Both POSTORDERMINMEM and POSTORDERMINIO minimize I/Os on homogeneous trees (unit file sizes).

Note: PostOrderMinMem does not rely on M so is optimal for any memory size and several memory layers (cache-oblivious)

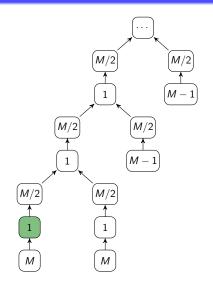
Postorder traversals are optimal on Homogeneous trees

Theorem

Both POSTORDERMINMEM and POSTORDERMINIO minimize I/Os on homogeneous trees (unit file sizes).

Note: PostOrderMinMem does not rely on M so is optimal for any memory size and several memory layers (cache-oblivious)

But PostOrderMinIO is not competitive on heterogeneous trees...



I/O optimal

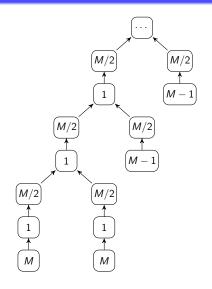
Peak memory: M+1

► I/Os: 1

POSTORDERMINIO

Peak memory: $\frac{3}{2}M$

▶ I/Os: Θ(|V|M)



I/O optimal

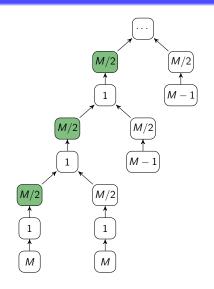
Peak memory: M+1

▶ I/Os: 1

POSTORDERMINIO

Peak memory: $\frac{3}{2}M$

▶ I/Os: Θ(|V|M)



I/O optimal

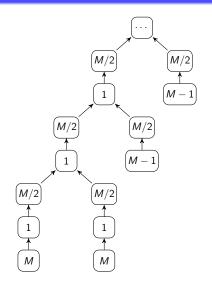
Peak memory: M+1

▶ I/Os: 1

POSTORDERMINIO

▶ Peak memory: $\frac{3}{2}M$

▶ I/Os: Θ(|V|M)



I/O optimal

Peak memory: M+1

▶ I/Os: 1

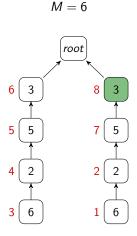
POSTORDERMINIO

Peak memory: $\frac{3}{2}M$

▶ I/Os: Θ(|V|M)

Competitive ratio: $\Omega(|V|M)$

Can we rely on MINMEMALGO?



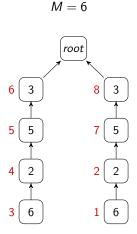
I/O Optimal

Peak memory: 9

▶ I/Os: 3

MINMEMALGO (red labels)

Peak memory: 8



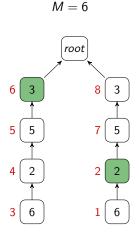
I/O Optimal

Peak memory: 9

► I/Os: 3

MINMEMALGO (red labels)

Peak memory: 8



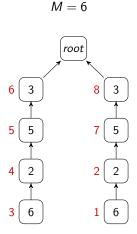
I/O Optimal

▶ Peak memory: 9

▶ I/Os: 3

MINMEMALGO (red labels)

Peak memory: 8



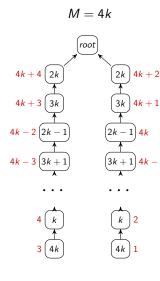
I/O Optimal

Peak memory: 9

► I/Os: 3

MINMEMALGO (red labels)

Peak memory: 8



I/O Optimal

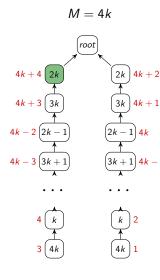
▶ Peak memory: 6k

► I/Os: 2*k*

MINMEMALGO (red labels)

▶ Peak memory: 5k

▶ $I/Os: > k^2$



I/O Optimal

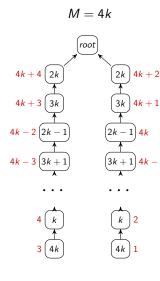
▶ Peak memory: 6k

▶ I/Os: 2*k*

MINMEMALGO (red labels)

▶ Peak memory: 5k

▶ $I/Os: > k^2$



I/O Optimal

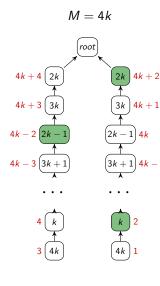
▶ Peak memory: 6k

▶ I/Os: 2*k*

MINMEMALGO (red labels)

▶ Peak memory: 5k

► I/Os: > k^2



I/O Optimal

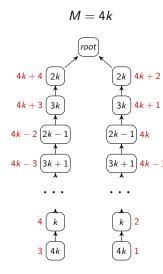
▶ Peak memory: 6k

▶ I/Os: 2*k*

MINMEMALGO (red labels)

▶ Peak memory: 5k

▶ $I/Os: > k^2$



I/O Optimal

▶ Peak memory: 6k

▶ I/Os: 2*k*

MINMEMALGO (red labels)

▶ Peak memory: 5k

► I/Os: > k^2

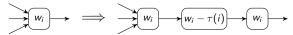
Competitive ratio: $\Omega(|V|+M)$

Existing solutions not satisfactory: need for a new heuristic

New heuristic: FULLRECEXPAND

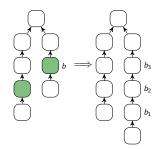
General description

- ▶ Underlying concept: run MINMEMALGO several times
- ▶ Each run: identify an I/O, then enforce it in the graph



FULLRECEXPAND

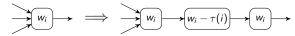
- ▶ Recursive calls on the root's children
- ▶ While MINMEMALGO needs I/Os:
 - Enforce the I/O that is the latest to be read from disk



New heuristic: FULLRECEXPAND

General description

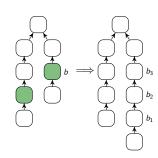
- ▶ Underlying concept: run MINMEMALGO several times
- ► Each run: identify an I/O, then enforce it in the graph



FULLRECEXPAND

- ▶ Recursive calls on the root's children
- ► While MINMEMALGO needs I/Os:
 - Enforce the I/O that is the latest to be read from disk

RECEXPAND $(\mathcal{O}(n^3))$: < 2 iterations



Experimental setup

Two datasets

- SYNTH: 330 synthetic binary trees of 3000 nodes uniformly drawn, memory weight uniform in [1; 100]
- ➤ TREES: 330 elimination trees of actual sparse matrices from 2000 to 40000 nodes (University of Florida Sparse Matrix Collection)
- ▶ Main memory size (M): mean of
 - Minimum memory for which a solution exists
 - Maximum memory for which I/Os are needed

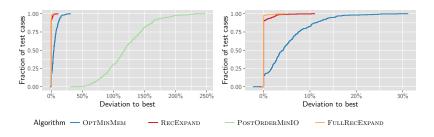
Heuristics

 MINMEMALGO, RECEXPAND, POSTORDERMINIO, FULLRECEXPAND

Performance

- ▶ If k I/Os are performed, performance is $1 + \frac{k}{M}$
- ▶ Objective: take into account the size of the main memory

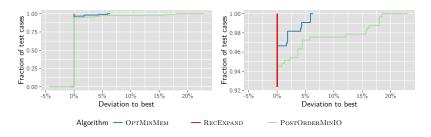
Results on Synth (right graph: zoom)



Analysis (Performance profiles: best is top-left)

- ▶ Left: PostOrderMinIO performs poorly (> 100% deviation in 3/4 of the cases)
- ► Right: RECEXPAND significantly better than MINMEMALGO:
 - Recexpand best in $\approx 90\%$ of the cases
 - MINMEMALGO best in $\approx 13\%$ of the cases
- ▶ RECEXPAND is comparable to FULLRECEXPAND

Results on TREES (right graph: zoom)



Analysis (best is top-left)

- Smaller differences (right graph: zoom of the top-left part)
- ▶ Most of the graphs have "easy" solutions (cannot ensure optimality)
- ▶ Recexpand is always the best heuristic
- ► MINMEMALGO outperforms POSTORDERMINIO

Conclusion

The MINIO problem

- Complexity still open, conjectured NP-hard
- Finding σ or τ suffices

Optimal solutions on subclasses

- Optimal postorder algorithm was already known
- ▶ PostOrderMinMem optimal for homogeneous trees

Heuristics

- ► MINMEMALGO performances are not bad
- RECEXPAND successfully combines the concepts of MINMEMALGO and the memory limit

Perspectives

- ▶ Recall: only concerns sequential schedules
- ► Next step: study I/O efficient parallel schedules (e.g., via memory booking)