Scheduling Series-Parallel Graphs of Malleable Tasks

Loris Marchal¹ Bertrand Simon¹ Oliver Sinnen² Frédéric Vivien¹

1: CNRS, INRIA, ENS Lyon and Univ. Lyon, FR. 2: Univ. Auckland, NZ.

Solhar plenary meeting

December 2nd, 2016

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the shortest makespan

- Provide theoretical guarantees on widely used scheduling algorithms
- Design algorithms with shorter makespan

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the shortest makespan

- Provide theoretical guarantees on widely used scheduling algorithms
- Design algorithms with shorter makespan

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the shortest makespan

- Provide theoretical guarantees on widely used scheduling algorithms
- Design algorithms with shorter makespan

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the shortest makespan

- Provide theoretical guarantees on widely used scheduling algorithms
- Design algorithms with shorter makespan

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the shortest makespan

- Provide theoretical guarantees on widely used scheduling algorithms
- Design algorithms with shorter makespan

Application modeling

Coarse-grain picture: tree of tasks (or SP task graph)

Each task is itself a parallel task

Behavior of tasks

parallel and malleable (processor allotment can change during task execution)

speed-up(p) = $\frac{time(1 \text{ proc.})}{time(p \text{ proc.})}$ work(p) = p · time(p proc.)

- > Speed-up model \rightarrow trade-off between:
 - Accuracy: fits well the data
 - Tractability: amenable to perf. analysis, guaranteed algorithms

Literature: studies with few assumptions

Non-increasing speed-up and non-decreasing work

- Independent tasks: theoretical FPTAS and practical 2-approximations [Jansen 2004, Fan et al. 2012]
- SP-graphs: ≈ 2.6-approximation [Lepère et al. 2001] with concave speed-up: (2 + ε)-approximation of unspecified complexity [Makarychev et al. 2014]

Previous work (Europar 2015, with Abdou Guermouche)

Prasanna & Musicus' model [Prasanna and Musicus 1996]

• speed-up(p) =
$$p^{\alpha}$$
, with $0 < \alpha \leq 1$

► Task T_i of weight w_i Processing time of T_i : = $\arg \min_C \left\{ \int_0^C p_i(t)^\alpha dt \ge w_i \right\}$

Theorem (Prasanna & Musicus)

In optimal schedules, at any parallel node $G_1 \parallel G_2$, the ratio of processors given to each branch is constant.

Corollary

• $G \approx$ equivalent task T_G of weight W_G defined by:

•
$$\mathcal{W}_{\mathcal{T}_i} = L_i$$

•
$$\mathcal{W}_{G_1;G_2} = \mathcal{W}_{G_1} + \mathcal{W}_{G_2}$$

•
$$\mathcal{W}_{G_1 \parallel G_2} = \left(\mathcal{W}_{G_1}^{1/\alpha} + \mathcal{W}_{G_2}^{1/\alpha} \right)^{\alpha}$$

► The (unique) optimal schedule S_{PM} can be computed in polynomial time.

Previous work (Europar 2015, with Abdou Guermouche)

Prasanna & Musicus model [PM 1996]: speed-up(p) = p^{α}

Conclusions:

- Optimal algorithm for SP-graphs
- Average Accuracy 😑
- Rational numbers of processors (3)
- No guarantees for distributed platforms

Today: simpler model

Simple and reasonable model of a parallel malleable task T_i

Perfect then linear then plateau, speedup function s_i:

Today: simpler model

Simple and reasonable model of a parallel malleable task T_i

Perfect then linear then plateau, speedup function s_i:

Related studies

► $\delta_i^1 = \delta_i^2$: Loris Marchal's talk at last meeting (we refined the model) 2-approximation [Balmin et al. 13] that we will discuss

Kell et al. 2015] :
$$time = \frac{w_i}{p} + (p-1)c$$
;
2-approximation for $p = 3$, open for $p \ge 4$

Setup

- Graph: elimination tree of sparse matrices (task: QR decomposition of a dense rectangular matrix)
- Platform: Miriel node of Plafrim (24 cores)
- Time each task with 1 to 24 cores
 - Plot speedup, correct decrease then compute parameters (δ^1 , δ^2 , Σ)

Conclusion

• Accurate fitting: median $R^2 = 0.98$

Setup

- Graph: elimination tree of sparse matrices (task: QR decomposition of a dense rectangular matrix)
- Platform: Miriel node of Plafrim (24 cores)
- Time each task with 1 to 24 cores
 - Plot speedup, correct decrease then compute parameters (δ^1 , δ^2 , Σ)

Conclusion

• Accurate fitting: median $R^2 = 0.98$

Setup

- Graph: elimination tree of sparse matrices (task: QR decomposition of a dense rectangular matrix)
- Platform: Miriel node of Plafrim (24 cores)
- Time each task with 1 to 24 cores
 - Plot speedup, correct decrease then compute parameters (δ^1 , δ^2 , Σ)

Conclusion

• Accurate fitting: median $R^2 = 0.98$

Setup

- Graph: elimination tree of sparse matrices (task: QR decomposition of a dense rectangular matrix)
- Platform: Miriel node of Plafrim (24 cores)
- Time each task with 1 to 24 cores
 - Plot speedup, correct decrease then compute parameters (δ^1 , δ^2 , Σ)

Conclusion

- Accurate fitting: median R² = 0.98 ^(a)
- Single-threshold model: median R² = 0.90

Question: should we allow allotments of rational number of cores?

Answer: yes, we can transform such a schedule to integer allotments

Why: piecewise linear speedup ensures McNaughton rule

Question: should we allow allotments of rational number of cores?

Answer: yes, we can transform such a schedule to integer allotments

Why: piecewise linear speedup ensures McNaughton rule

1 Analysis of PROPORTIONAL MAPPING [Pothen et al. 1993]

- 2 Design of a greedy strategy
- Analysis of FLOWFLEX [Balmin et al. 2013]
- ④ Experimental comparison

5 Conclusion

PROPORTIONALMAPPING [Pothen et al. 1993]

Description

- Simple allocation for trees or SP-graphs
- On $G_1 \parallel G_2$: constant share to G_i , proportional to its weight W_i

Algorithm 1: PROPORTIONAL MAPPING (graph G, q procs)

1 Define the share allocated to sub-graphs of G:

if $G = G_1; G_2; \ldots G_k$ then $\downarrow \forall i, p_i \leftarrow q$ 2 Call PROPORTIONALMAPPING (G_i , p_i) for each sub-graph G_i

Then schedule tasks on p_i processors ASAP

Notes

- Produces a moldable schedule (fixed allocation over time)
- Unaware of task thresholds

Theorem

PROPORTIONALMAPPING is a (1 + r)-approximation of the optimal makespan, with $r = \max_i (\delta_i^2 / \Sigma_i) \ge 1$.

Proof.

- ▶ Consider makespan with perfect speedup: $M_{\infty} \leq M_{
 m opt}$
- There is an idle-free path Φ from the entry task to the end
- Split the tasks of Φ in two sets:

Theorem

PROPORTIONALMAPPING is a (1 + r)-approximation of the optimal makespan, with $r = \max_i (\delta_i^2 / \Sigma_i) \ge 1$.

Proof.

- ▶ Consider makespan with perfect speedup: $M_{\infty} \leq M_{\mathrm{opt}}$
- There is an idle-free path Φ from the entry task to the end
- Split the tasks of Φ in two sets:
 - A = limited by their thresholds: $len(A) \leq$ critical path $\leq M_{opt}$

Theorem

PROPORTIONALMAPPING is a (1 + r)-approximation of the optimal makespan, with $r = \max_i (\delta_i^2 / \Sigma_i) \ge 1$.

Proof.

- ▶ Consider makespan with perfect speedup: $M_{\infty} \leq M_{\text{opt}}$
- There is an idle-free path Φ from the entry task to the end
- Split the tasks of Φ in two sets:
 - A = limited by their thresholds: $len(A) \leq$ critical path $\leq M_{opt}$
 - B = limited by the allocation:

$$len(B) = \sum_{i \in B} \frac{w_i}{s_i(p_i)} \quad \text{and} \quad M_{\infty} \ge \sum_{i \in B} \frac{w_i}{p_i} \quad \text{so} \quad len(B) \le rM_{\infty}$$

Theorem

PROPORTIONALMAPPING is a (1 + r)-approximation of the optimal makespan, with $r = \max_i (\delta_i^2 / \Sigma_i) \ge 1$.

Proof.

- ▶ Consider makespan with perfect speedup: $M_{\infty} \leq M_{\text{opt}}$
- There is an idle-free path Φ from the entry task to the end
- Split the tasks of Φ in two sets:
 - A = limited by their thresholds: $len(A) \leq$ critical path $\leq M_{opt}$
 - B = limited by the allocation:

$$len(B) = \sum_{i \in B} \frac{w_i}{s_i(p_i)}$$
 and $M_{\infty} \ge \sum_{i \in B} \frac{w_i}{p_i}$ so $len(B) \le rM_{\infty}$

► Finally, $M = len(\Phi) = len(A) + len(B) \le (1 + r)M_{opt}$

Issue

- Imperfect speedup: tasks do not finish simultaneously
- Idle processors: could reallocate them

Issue

- Imperfect speedup: tasks do not finish simultaneously
- Idle processors: could reallocate them

Design of PropMapExt from ProportionalMapping

- ▶ When a task terminates: reallocate its processors to the *sibling* tasks
- Reallocation is done proportionally to the remaining critical path
- ▶ PROPMAPEXTTHRESH: idem but never exceeds δ^2

Issue

- Imperfect speedup: tasks do not finish simultaneously
- Idle processors: could reallocate them

- ▶ When a task terminates: reallocate its processors to the *sibling* tasks
- Reallocation is done proportionally to the remaining critical path
- ▶ PROPMAPEXTTHRESH: idem but never exceeds δ^2

Issue

- Imperfect speedup: tasks do not finish simultaneously
- Idle processors: could reallocate them

- ▶ When a task terminates: reallocate its processors to the *sibling* tasks
- Reallocation is done proportionally to the remaining critical path
- ▶ PROPMAPEXTTHRESH: idem but never exceeds δ^2

Issue

- Imperfect speedup: tasks do not finish simultaneously
- Idle processors: could reallocate them

- ▶ When a task terminates: reallocate its processors to the *sibling* tasks
- Reallocation is done proportionally to the remaining critical path
- PROPMAPEXTTHRESH: idem but never exceeds δ^2

Issue

- Imperfect speedup: tasks do not finish simultaneously
- Idle processors: could reallocate them

- ▶ When a task terminates: reallocate its processors to the *sibling* tasks
- Reallocation is done proportionally to the remaining critical path
- PROPMAPEXTTHRESH: idem but never exceeds δ^2

Analysis of PROPORTIONALMAPPING [Pothen et al. 1993]

2 Design of a greedy strategy

3 Analysis of FLOWFLEX [Balmin et al. 2013]

④ Experimental comparison

5 Conclusion

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Maintain a set of available tasks
- Consider free tasks by decreasing priority:
 - allocate δ_i^1 procs to each task until the limit
 - if remaining procs, increase allocation to δ_i^2 procs
- Stop the allocation when the first task terminates, then repeat

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Maintain a set of available tasks
- Consider free tasks by decreasing priority:
 - allocate δ_i^1 procs to each task until the limit
 - if remaining procs, increase allocation to δ_i^2 procs
- Stop the allocation when the first task terminates, then repeat

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Maintain a set of available tasks
- Consider free tasks by decreasing priority:
 - allocate δ_i^1 procs to each task until the limit
 - if remaining procs, increase allocation to δ_i^2 procs
- Stop the allocation when the first task terminates, then repeat

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Maintain a set of available tasks
- Consider free tasks by decreasing priority:
 - allocate δ_i^1 procs to each task until the limit
 - if remaining procs, increase allocation to δ_i^2 procs
- Stop the allocation when the first task terminates, then repeat

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Maintain a set of available tasks
- Consider free tasks by decreasing priority:
 - allocate δ_i^1 procs to each task until the limit
 - if remaining procs, increase allocation to δ_i^2 procs
- Stop the allocation when the first task terminates, then repeat

Theorem

GREEDY-FILLING is a $1 + r - \frac{\delta_{\min}^2}{p}$ approximation to the optimal makespan, with $r = \max_i \left(\delta_i^2 / \Sigma_i \right) \ge 1$.

Proof.

Transposition of the classical $\left(2-\frac{1}{p}\right)$ -approximation result by Graham

• Construct a path Φ in G: all idle times happen during tasks of Φ

Theorem

GREEDY-FILLING is a $1 + r - \frac{\delta_{\min}^2}{p}$ approximation to the optimal makespan, with $r = \max_i \left(\delta_i^2 / \Sigma_i \right) \ge 1$.

Proof.

Transposition of the classical $\left(2-\frac{1}{p}\right)$ -approximation result by Graham

• Construct a path Φ in G: all idle times happen during tasks of Φ

▶ Bound Used and Idle areas (Used + Idle = p M)

Theore<u>m</u>

GREEDY-FILLING is a $1 + r - \frac{\delta_{\min}^2}{p}$ approximation to the optimal makespan, with $r = \max_i \left(\delta_i^2 / \Sigma_i \right) \ge 1$.

Proof.

Transposition of the classical $\left(2-\frac{1}{p}\right)$ -approximation result by Graham

- Construct a path Φ in G: all idle times happen during tasks of Φ
- ▶ Bound Used and Idle areas (Used + Idle = p M)
 - At least δ_{\min} processors busy during Φ so $Idle \leq (p \delta_{\min}^2)M_{opt}$

Theorem

GREEDY-FILLING is a $1 + r - \frac{\delta_{\min}^2}{p}$ approximation to the optimal makespan, with $r = \max_i (\delta_i^2 / \Sigma_i) \ge 1$.

Proof.

Transposition of the classical $\left(2-\frac{1}{p}\right)$ -approximation result by Graham

- Construct a path Φ in G: all idle times happen during tasks of Φ
- ▶ Bound Used and Idle areas (Used + Idle = p M)
 - At least δ_{\min} processors busy during Φ so $Idle \leq (p \delta_{\min}^2)M_{opt}$
 - s_i is concave so

 $Used \leq \sum_{i} \delta_{i}^{2} \frac{w_{i}}{\Sigma_{i}} \leq rpM_{opt}$

Theore<u>m</u>

GREEDY-FILLING is a $1 + r - \frac{\delta_{\min}^2}{p}$ approximation to the optimal makespan, with $r = \max_i (\delta_i^2 / \Sigma_i) \ge 1$.

Proof.

Transposition of the classical $\left(2-\frac{1}{p}\right)$ -approximation result by Graham

- Construct a path Φ in G: all idle times happen during tasks of Φ
- ▶ Bound Used and Idle areas (Used + Idle = p M)
 - At least δ_{\min} processors busy during Φ so $Idle \leq (p \delta_{\min}^2)M_{opt}$
 - s_i is concave so $Used \leq \sum_i \delta_i^2 \frac{w_i}{\Sigma_i} \leq rpM_{\sf opt}$

Note

Theorem applies to every strategy without deliberate idle time

1 Analysis of PROPORTIONALMAPPING [Pothen et al. 1993]

- Design of a greedy strategy
- 3 Analysis of FLOWFLEX [Balmin et al. 2013]
- ④ Experimental comparison

5 Conclusion

Principle

- 2-approximation in the single-threshold model
- Solve the problem on an infinite number of processors
- On each interval with constant allocations: if the processor limit is exceeded, downscale the allocation proportionally

Adaptation to our model

- Similar to PROPMAPEXTTHRESH: when a task terminates, rebalance idling processors proportionally to the threshold
- Note: if the single-threshold model is available, downscale the allocation proportionnally to this threshold

1 Analysis of PROPORTIONALMAPPING [Pothen et al. 1993]

- 2 Design of a greedy strategy
- Analysis of FLOWFLEX [Balmin et al. 2013]

Experimental comparison

5 Conclusion

Two datasets

- SYNTH: 30 synthetic SP-graphs of 200 nodes with δ¹_i = α × w_i and δ²_i uniform in [δ¹_i, 2δ¹_i]
- TREES: Assembly trees of 24 sparse matrices from 40 to 6000 nodes (University of Florida Sparse Matrix Collection), speedup deduced from timings explained earlier

Heuristics

► GREEDY-FILLING, PROPMAPNAIVE, PROPMAPEXT, PROPMAPEXTTHRESH, FLOWFLEX

Note: we tested 8 variants but only present the main ones

Greedy strategy

FlowFlex

Results on SYNTH

Comparison method: performance profiles (left graph)

- Determine the makespan for each instance (heuristic, graph, #procs)
- ► Given a heuristic H and a value \(\tau \ge 1\): compute how often H lies within a factor \(\tau\) of the best heuristic

For $\tau = 1.05$, GREEDY-FILLING curve is at 0.98: in 98% of instances, it is within 5% of the best result

Greedy strategy

FlowFlex

Results on SYNTH

- Left: performance profile (best is top-left)
 - GREEDY-FILLING is almost always optimal and gains > 5% in 50% of the cases against any other heuristic
- Right: makespan normalized by a LB (best is 1.0, bottom)
 - Sample random graph
 - Results on different graphs are quite similar

Greedy strategy

FlowFlex

Results on TREES

- Left: performance profile (best is top-left)
 - Smaller discrepancies
 - **PROPMAPEXT** and **PROPMAPEXTTHRESH** perform better and are similar
- Right: makespan normalized by a LB (best is 1.0, bottom)
 - Exposes the results on a sample tree
 - Trees have different structures, so the heuristic hierarchy depends on the tree and the number of processors

Results on TREES

1 Analysis of PROPORTIONALMAPPING [Pothen et al. 1993]

- 2 Design of a greedy strategy
- Analysis of FLOWFLEX [Balmin et al. 2013]

④ Experimental comparison

On the model

- ► Far more accurate than the single-threshold one
- NP-complete, as the single-threshold one
- Theoretically guaranteed heuristics

On the model

- ► Far more accurate than the single-threshold one
- NP-complete, as the single-threshold one
- Theoretically guaranteed heuristics

On the heuristics

- Greedy-Filling
 - best when the tree can be scheduled without forced idle times
 - $\bullet\,$ best heuristic on $\ensuremath{\mathrm{SYNTH}}$ and other well-balanced instances
- PROPORTIONALMAPPING
 - naive version is not competitive
 - extensions are almost equivalent
 - $\bullet\,$ give the best global results on ${\rm TREES}\,$
 - best when large non-urgent tasks are available soon, or if several paths are critical