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Motivation

Context:
I Optimize the time performance of multifrontal sparse solvers

(e.g., MUMPS or QR-MUMPS)
I Computations well described by a tree of tasks
I Generalization to Series-Parallel graphs
I Purpose: find a schedule achieving the shortest makespan
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Objectives:
I Provide theoretical guarantees on widely used scheduling algorithms
I Design algorithms with shorter makespan
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Application modeling

Coarse-grain picture: tree of tasks (or SP task graph)
I Each task is itself a parallel task

Behavior of tasks
I parallel and malleable

(processor allotment can change during task execution)

speed-up(p) =
time(1 proc.)
time(p proc.)

∣∣∣ work(p) = p · time(p proc.)

I Speed-up model −→ trade-off between:
Accuracy: fits well the data
Tractability: amenable to perf. analysis, guaranteed algorithms
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General speed-up models

Literature: studies with few assumptions

Non-increasing speed-up and non-decreasing work
I Independent tasks: theoretical FPTAS and practical

2-approximations [Jansen 2004, Fan et al. 2012]

I SP-graphs: ≈ 2.6-approximation [Lepère et al. 2001]
with concave speed-up: (2 + ε)-approximation of unspecified
complexity [Makarychev et al. 2014]
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Previous work (Europar 2015, with Abdou Guermouche)

Prasanna & Musicus’ model [Prasanna and Musicus 1996]
I speed-up(p) = pα, with 0 < α ≤ 1

1

1

speed-up

processors

α = 1
perfect parallelism

0 < α < 1

α = 0
no parallelism

I Task Ti of weight wi

Processing time of Ti : = argmin
C

{∫ C

0
pi (t)α dt ≥ wi

}
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Results for Prasanna & Musicus’ model

Theorem (Prasanna & Musicus)
In optimal schedules, at any parallel node G1 ‖G2, the ratio of processors
given to each branch is constant.

Corollary
I G ≈ equivalent task TG of weight WG defined by:

WTi = Li
WG1 ; G2 =WG1 +WG2

WG1 ‖ G2 =
(
W1/α

G1
+W1/α

G2

)α
I The (unique) optimal schedule SPM can be computed in polynomial

time.
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Previous work (Europar 2015, with Abdou Guermouche)

Prasanna & Musicus model [PM 1996]: speed-up(p) = pα

1

1

speed-up

processors

α = 1
perfect parallelism

0 < α < 1

α = 0
no parallelism

Conclusions:

I Optimal algorithm for SP-graphs
I Average Accuracy
I Rational numbers of processors

I Task finish times complex
to compute

I No guarantees for
distributed platforms
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Today: simpler model

Simple and reasonable model of a parallel malleable task Ti

I Perfect then linear then plateau, speedup function si :

processors

speed-up

δ1
i δ2

i

Σi

slope =
1

slope < 1

Related studies
I δ1

i = δ2
i : Loris Marchal’s talk at last meeting (we refined the model)

2-approximation [Balmin et al. 13] that we will discuss

I [Kell et al. 2015] : time = wi
p + (p − 1)c;

2-approximation for p = 3, open for p ≥ 4
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Experimental validation
Setup

I Graph: elimination tree of sparse matrices (task: QR decomposition
of a dense rectangular matrix)

I Platform: Miriel node of Plafrim (24 cores)
I Time each task with 1 to 24 cores

Plot speedup, correct decrease then compute parameters (δ1, δ2, Σ)
Conclusion

I Accurate fitting: median R2 = 0.98

I Single-threshold model: median R2 = 0.90
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Integer or rational allotments?

Question: should we allow allotments of rational number of cores?

Answer: yes, we can transform such a schedule to integer allotments

Why: piecewise linear speedup ensures McNaughton rule

procs

1.4

3.2
4

time

=⇒

procs

1

2

3

4

time
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Proportional Mapping Greedy strategy FlowFlex Experimental comparison

Outline

1 Analysis of ProportionalMapping [Pothen et al. 1993]

2 Design of a greedy strategy

3 Analysis of FlowFlex [Balmin et al. 2013]

4 Experimental comparison

5 Conclusion
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Proportional Mapping Greedy strategy FlowFlex Experimental comparison

ProportionalMapping [Pothen et al. 1993]

Description
I Simple allocation for trees or SP-graphs
I On G1 ‖ G2: constant share to Gi , proportional to its weight Wi

Algorithm 1: ProportionalMapping (graph G , q procs)
1 Define the share allocated to sub-graphs of G :

if G = G1; G2; . . .Gk then
∀i , pi ← q

if G = G1 ‖ G2 ‖ . . .Gk
then
∀i , pi ← qWi/

∑
j Wj

2 Call ProportionalMapping (Gi , pi) for each sub-graph Gi

I Then schedule tasks on pi processors ASAP

Notes
I Produces a moldable schedule (fixed allocation over time)
I Unaware of task thresholds
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Proportional Mapping Greedy strategy FlowFlex Experimental comparison

Analysis of ProportionalMapping schedules

Theorem
ProportionalMapping is a (1 + r)-approximation of the optimal
makespan, with r = maxi

(
δ2

i
/

Σi
)
≥ 1.

Proof.
I Consider makespan with perfect speedup: M∞ ≤ Mopt

I There is an idle-free path Φ from the entry task to the end
I Split the tasks of Φ in two sets:

A = limited by their thresholds: len(A) ≤ critical path ≤ Mopt
B = limited by the allocation:

len(B) =
∑
i∈B

wi

si (pi )
and M∞ ≥

∑
i∈B

wi

pi
so len(B) ≤ rM∞

I Finally, M = len(Φ) = len(A) + len(B) ≤ (1 + r)Mopt
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Proportional Mapping Greedy strategy FlowFlex Experimental comparison

Optimization of ProportionalMapping
Issue

I Imperfect speedup: tasks do not finish simultaneously
I Idle processors: could reallocate them

Design of PropMapExt from ProportionalMapping
I When a task terminates: reallocate its processors to the sibling tasks
I Reallocation is done proportionally to the remaining critical path
I PropMapExtThresh: idem but never exceeds δ2

PropMapping:

p

time

Rebalancing:

p

time

PropMapExt:

p

time
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Proportional Mapping Greedy strategy FlowFlex Experimental comparison
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Proportional Mapping Greedy strategy FlowFlex Experimental comparison

Design of a greedy strategy: Greedy-Filling
Algorithm

I Assign priorities to tasks (usually by bottom-level)
I Maintain a set of available tasks
I Consider free tasks by decreasing priority:

allocate δ1
i procs to each task until the limit

if remaining procs, increase allocation to δ2
i procs

I Stop the allocation when the first task terminates, then repeat
Illustration

initial profile:

p

time

bu
sy

free tasks:
{w1,w2,w3,w4}

tasks allocation:

p

time

bu
sy

next profile:

p

time

bu
sy
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Proportional Mapping Greedy strategy FlowFlex Experimental comparison

Analysis of Greedy-Filling schedules

Theorem

Greedy-Filling is a 1 + r − δ2
min
p approximation to the optimal

makespan, with r = maxi
(
δ2

i
/

Σi
)
≥ 1.

Proof.
Transposition of the classical (2− 1

p )-approximation result by Graham
I Construct a path Φ in G : all idle times happen during tasks of Φ

I Bound Used and Idle areas (Used + Idle = p M)
At least δmin processors busy during Φ so Idle ≤ (p − δ2

min)Mopt

si is concave so Used ≤
∑

i

δ2
i

wi

Σi
≤ rpMopt

Note
I Theorem applies to every strategy without deliberate idle time
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FlowFlex [Balmin et al. 13]

Principle
I 2-approximation in the single-threshold model
I Solve the problem on an infinite number of processors
I On each interval with constant allocations: if the processor limit is

exceeded, downscale the allocation proportionally

Adaptation to our model
I Similar to PropMapExtThresh: when a task terminates,

rebalance idling processors proportionally to the threshold
I Note: if the single-threshold model is available, downscale the

allocation proportionnally to this threshold
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Experimental setup

Two datasets
I SYNTH: 30 synthetic SP-graphs of 200 nodes with δ1

i = α× wi
and δ2

i uniform in [δ1
i , 2δ1

i ]

I TREES: Assembly trees of 24 sparse matrices from 40 to 6000
nodes (University of Florida Sparse Matrix Collection), speedup
deduced from timings explained earlier

Heuristics
I Greedy-Filling, PropMapNaive, PropMapExt,

PropMapExtThresh, FlowFlex

Note: we tested 8 variants but only present the main ones
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Results on SYNTH
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Comparison method: performance profiles (left graph)
I Determine the makespan for each instance (heuristic, graph, #procs)
I Given a heuristic H and a value τ ≥ 1: compute how often H lies

within a factor τ of the best heuristic
For τ = 1.05, Greedy-Filling curve is at 0.98:
in 98% of instances, it is within 5% of the best result
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I Left: performance profile (best is top-left)
Greedy-Filling is almost always optimal and gains > 5% in 50%
of the cases against any other heuristic

I Right: makespan normalized by a LB (best is 1.0, bottom)
Sample random graph
Results on different graphs are quite similar
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Results on TREES
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I Left: performance profile (best is top-left)
Smaller discrepancies
PropMapExt and PropMapExtThresh perform better and
are similar

I Right: makespan normalized by a LB (best is 1.0, bottom)
Exposes the results on a sample tree
Trees have different structures, so the heuristic hierarchy depends on
the tree and the number of processors
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Conclusion

On the model
I Far more accurate than the single-threshold one
I NP-complete, as the single-threshold one
I Theoretically guaranteed heuristics

On the heuristics
I Greedy-Filling

best when the tree can be scheduled without forced idle times
best heuristic on Synth and other well-balanced instances

I ProportionalMapping
naive version is not competitive
extensions are almost equivalent
give the best global results on Trees
best when large non-urgent tasks are available soon, or if several
paths are critical
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