Malleable task-graph scheduling with a practical speed-up model

Loris Marchal¹ Bertrand Simon¹ Oliver Sinnen² Frédéric Vivien¹

1: CNRS, INRIA, ENS Lyon and Univ. Lyon, FR. 2: Univ. Auckland, NZ.

New Challenges in Scheduling Theory — Aussois

March 2016

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the lowest makespan

- Provide theoretical guarantees on widely used scheduling algorithms
- Design ones with smaller makespan

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the lowest makespan

- Provide theoretical guarantees on widely used scheduling algorithms
- Design ones with smaller makespan

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the lowest makespan

- Provide theoretical guarantees on widely used scheduling algorithms
- Design ones with smaller makespan

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the lowest makespan

- Provide theoretical guarantees on widely used scheduling algorithms
- Design ones with smaller makespan

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the lowest makespan

- Provide theoretical guarantees on widely used scheduling algorithms
- Design ones with smaller makespan

Application modeling

Coarse-grain picture: tree of tasks (or SP task graph)

Each task: partial factorization, graph of smaller sub-tasks

- Expand all tasks and schedule resulting graph ?
- Scheduling trees simpler than general graphs (forget sub-tasks)

Behavior of coarse-grain tasks

- parallel and malleable
- ► Speed-up model → trade-off between:
 - Accuracy : fits well the data
 - Tractability : amenable to perf. analysis, guaranteed algorithms

Application modeling

Coarse-grain picture: tree of tasks (or SP task graph)

► Each task: partial factorization, graph of smaller sub-tasks

- Expand all tasks and schedule resulting graph ?
- Scheduling trees simpler than general graphs (forget sub-tasks)

Behavior of coarse-grain tasks

- parallel and malleable
- Speed-up model → trade-off between:
 - Accuracy : fits well the data
 - Tractability : amenable to perf. analysis, guaranteed algorithms

Application modeling

Coarse-grain picture: tree of tasks (or SP task graph)

► Each task: partial factorization, graph of smaller sub-tasks

- Expand all tasks and schedule resulting graph ?
- Scheduling trees simpler than general graphs (forget sub-tasks)

Behavior of coarse-grain tasks

- parallel and malleable
- Speed-up model → trade-off between:
 - Accuracy : fits well the data
 - Tractability : amenable to perf. analysis, guaranteed algorithms

General speed-up models

Literature: studies with few assumptions

speed-up(p) = $\frac{time(1 \text{ proc.})}{time(p \text{ proc.})}$ | work(p) = p · time(p proc.)

Non-increasing speed-up and work

- Independent tasks: theoretical FPTAS and practical 2-approximations [Jansen 2004, Fan et al. 2012]
- ▶ SP-graphs: ≈ 2.6 -approximation [Lepère et al. 2001] with concave speed-up: $(2 + \varepsilon)$ -approximation of unspecified complexity [Makarychev et al. 2014]

Previous work (Europar 2015, with A. Guermouche)

Prasanna & Musicus model [PM 1996]: speed – up(p) = p^{α}

Conclusions:

- Average Accuracy 😑
- Rational numbers of processors (2)
- Optimal algorithm for SP-graphs
- No guarantees for distributed platforms

Today: simpler model

Simple and reasonable model of a parallel malleable task T_i

- Perfect parallelism up to a threshold δ_i : time = $w_i / \min(p, \delta_i)$
- Rational allocation for free (McNaughton's wrap-around rule)

Related studies

2-approximation [Balmin et al. 13] that we will discuss

Kell et al. 2015] :
$$time = \frac{w_i}{p} + (p-1)c;$$

2-approximation for $p = 3$, open for $p \ge 4$

Today: simpler model

Simple and reasonable model of a parallel malleable task T_i

- Perfect parallelism up to a threshold δ_i : time = $w_i / \min(p, \delta_i)$
- Rational allocation for free (McNaughton's wrap-around rule)

Related studies

2-approximation [Balmin et al. 13] that we will discuss

► [Kell et al. 2015] :
$$time = \frac{w_i}{p} + (p-1)c$$
;
2-approximation for $p = 3$, open for $p \ge 4$

Outline

Problem complexity

2 Analysis of PROPORTIONALMAPPING [Pothen et al. 1993]

Oesign of a greedy strategy

4 Experimental comparison

5 Conclusion

Overview of the problem

Given a SP-graph, p processors: compute the optimal makespan

- Problem known as $P|sp graph, any, spdp-lin, \delta_i|C_{max}$
- ► Malleability + perfect parallelism ⇒ P ☺
- $\blacktriangleright \qquad \cdots \qquad + \text{ thresholds} \Longrightarrow \mathsf{NP-complete} \blacksquare$
- Existing proof in [Drozdowski and Kubiak 1999] : arguably complex

Contribution

Overview of the problem

Given a SP-graph, p processors: compute the optimal makespan

- Problem known as $P|sp graph, any, spdp-lin, \delta_i|C_{max}$
- Malleability + perfect parallelism \implies P \bigcirc
- $\blacktriangleright \qquad \cdots \qquad + \text{ thresholds} \implies \text{NP-complete} \blacksquare$
- Existing proof in [Drozdowski and Kubiak 1999] : arguably complex

Contribution

 \implies P $\stackrel{\bigcirc}{\odot}$

Overview of the problem

Given a SP-graph, p processors: compute the optimal makespan

- Problem known as $P|sp graph, any, spdp-lin, \delta_i|C_{max}$
- Malleability + perfect parallelism
- $\bullet \qquad \qquad + \text{ thresholds} \implies \text{NP-complete} \textcircled{\bullet}$

Existing proof in [Drozdowski and Kubiak 1999] : arguably complex

Contribution

Overview of the problem

Given a SP-graph, p processors: compute the optimal makespan

- Problem known as $P|sp graph, any, spdp-lin, \delta_i|C_{max}$
- Malleability + perfect parallelism \implies P \bigcirc
- Existing proof in [Drozdowski and Kubiak 1999] : arguably complex

Contribution

$$\delta_i = w_i$$

min. computing time of 1

Problem complexity	Proportional Mapping	Greedy strategy	Experimental comparison
Widget for th	e proof		

Each task:

- $\delta_i = w_i$
- min. computing time of 1

Problem complexity	Proportional Mapping	Greedy strategy	Experimental comparison
Widget for th	e proof		

Each task:

- $\delta_i = w_i$
- min. computing time of 1

Proof sketch

Reduction from 3-SAT (ex: $x_1 \ OR \ x_2 \ OR \ \overline{x}_2$)

- ▶ Idea: each variable \Rightarrow a modified widget (a chain for both x_i , \overline{x}_i)
- extremities length \Rightarrow variable middle \Rightarrow clause
- The one starting later: TRUE
- Gray chain: profile allowing only correct behaviors

Proportional Mapping

Proof sketch

Reduction from 3-SAT (ex: $x_1 OR x_2 OR \overline{x}_2$)

- ▶ Idea: each variable \Rightarrow a modified widget (a chain for both x_i , \overline{x}_i)
- extremities length \Rightarrow variable middle \Rightarrow clause
- The one starting later: TRUE
- Gray chain: profile allowing only correct behaviors

Proportional Mapping

Proof sketch

Reduction from 3-SAT (ex: $x_1 \ OR \ x_2 \ OR \ \overline{x}_2$)

- ▶ Idea: each variable \Rightarrow a modified widget (a chain for both x_i , \overline{x}_i)
- extremities length \Rightarrow variable middle \Rightarrow clause
- The one starting later: TRUE
- Gray chain: profile allowing only correct behaviors

Proportional Mapping

Proof sketch

Reduction from 3-SAT (ex: $x_1 \ OR \ x_2 \ OR \ \overline{x}_2$)

- ▶ Idea: each variable \Rightarrow a modified widget (a chain for both x_i , \overline{x}_i)
- extremities length \Rightarrow variable middle \Rightarrow clause
- The one starting later: TRUE
- Gray chain: profile allowing only correct behaviors

Problem complexity

2 Analysis of PROPORTIONALMAPPING [Pothen et al. 1993]

Oesign of a greedy strategy

4 Experimental comparison

5 Conclusion

PROPORTIONAL MAPPING [Pothen et al. 1993]

Description

- Simple allocation for trees or SP-graphs
- On $G_1 \parallel G_2$: constant share to G_i , proportional to its weight W_i

Algorithm 1: PROPORTIONAL MAPPING (graph G, q procs)

1 Define the share allocated to sub-graphs of G:

if $G = G_1; G_2; \dots G_k$ then $\downarrow \forall i, p_i \leftarrow q$

if
$$G = G_1 \parallel G_2 \parallel \dots G_k$$
 then
 $\downarrow \forall i, p_i \leftarrow qW_i / \sum_j W_j$

2 Call PROPORTIONAL MAPPING (G_i, p_i) for each sub-graph G_i

Then schedule tasks on p_i processors ASAP

Notes

- Produces a moldable schedule (fixed allocation over time)
- Unaware of task thresholds

Theorem

PROPORTIONAL MAPPING is a 2-approximation of the optimal makespan.

Proof.

- Consider makespan without thresholds: $M_{\infty} \leq M_{\text{opt}}$
- There is an idle-free path Φ from the entry task to the end
- Split the tasks of Φ in two sets:
 - A = tasks limited by their thresholds: $len(A) \leq$ critical path $\leq M_{opt}$
 - B = tasks limited by the allocation: $len(B) \le M_{\infty} \le M_{opt}$
- Finally, $M = len(\Phi) = len(A) + len(B) \le 2M_{opt}$

Note

Theorem

PROPORTIONAL MAPPING is a 2-approximation of the optimal makespan.

Proof.

- Consider makespan without thresholds: $M_{\infty} \leq M_{\text{opt}}$
- There is an idle-free path Φ from the entry task to the end
- Split the tasks of Φ in two sets:
 - A = tasks limited by their thresholds: $len(A) \leq$ critical path $\leq M_{opt}$
 - B = tasks limited by the allocation: $len(B) \le M_{\infty} \le M_{opt}$
- Finally, $M = len(\Phi) = len(A) + len(B) \le 2M_{opt}$

Note

Theorem

PROPORTIONAL MAPPING is a 2-approximation of the optimal makespan.

Proof.

- Consider makespan without thresholds: $M_{\infty} \leq M_{\text{opt}}$
- \blacktriangleright There is an idle-free path Φ from the entry task to the end
- Split the tasks of Φ in two sets:
 - A = tasks limited by their thresholds: $len(A) \leq$ critical path $\leq M_{opt}$
 - B = tasks limited by the allocation: $len(B) \le M_{\infty} \le M_{opt}$
- Finally, $M = len(\Phi) = len(A) + len(B) \le 2M_{opt}$

Note

Theorem

PROPORTIONAL MAPPING is a 2-approximation of the optimal makespan.

Proof.

- Consider makespan without thresholds: $M_{\infty} \leq M_{\text{opt}}$
- There is an idle-free path Φ from the entry task to the end
- Split the tasks of Φ in two sets:
 - A = tasks limited by their thresholds: $len(A) \leq$ critical path $\leq M_{opt}$
 - $B = \text{tasks limited by the allocation: } len(B) \le M_{\infty} \le M_{\text{opt}}$
- Finally, $M = len(\Phi) = len(A) + len(B) \le 2M_{opt}$

Note

Problem complexity

2 Analysis of PROPORTIONALMAPPING [Pothen et al. 1993]

Oesign of a greedy strategy

4 Experimental comparison

5 Conclusion

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Consider free tasks by decreasing priority
- Greedily insert each task in the current schedule:
 - Compute earliest starting time
 - Pour task into the available processor space, respecting thresholds

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Consider free tasks by decreasing priority
- Greedily insert each task in the current schedule:
 - Compute earliest starting time
 - Pour task into the available processor space, respecting thresholds

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Consider free tasks by decreasing priority
- Greedily insert each task in the current schedule:
 - Compute earliest starting time
 - Pour task into the available processor space, respecting thresholds

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Consider free tasks by decreasing priority
- Greedily insert each task in the current schedule:
 - Compute earliest starting time
 - Pour task into the available processor space, respecting thresholds

Analysis of GREEDY-FILLING schedules

Theorem

GREEDY-FILLING is a $2 - \frac{\delta_{\min}}{p}$ approximation to the optimal makespan.

Proof.

Transposition of the classical $\left(2-\frac{1}{p}\right)$ -approximation result by Graham

- Construct a path Φ in G: all idle times happen during tasks of Φ
- ▶ Bound Used and Idle areas (Used + Idle = p M)
 - At least δ_{\min} processors busy during Φ

Note

Theorem applies to every strategy without deliberate idle time

Outline

Problem complexity

2 Analysis of PROPORTIONALMAPPING [Pothen et al. 1993]

Oesign of a greedy strategy

Experimental comparison

5 Conclusion

Simulations

Third algorithm to compare with: FLOWFLEX

- 2-approximation designed in [Balmin et al. 13] to schedule "Malleable Flows of MapReduce Jobs"
- Solve the problem on an infinite number of processors
- Downscale the allocation on intervals when it is needed

Three datasets

- SYNTH-PROP: Synthetic SP-graphs with $\delta_i = \alpha \times w_i$,
- SYNTH-RAND: Same but with a factor log-uniform in $[0.1\alpha, 10\alpha]$,
- TREES: Assembly trees of sparse matrices, $\delta_i = \alpha \times w_i$.

Results on SYNTH-PROP

- Y: Makespan normalized by the lower bound $LB = \max(CP, \frac{W}{n})$
- X: Number of processors normalized by:

$$parallelism = \frac{\text{makespan with all } \delta_i = 1 \text{ and } p = \infty}{\text{makespan with all } \delta_i = 1 \text{ and } p = 1}$$

Results on SYNTH-PROP

- Plot: mean + ribbon with 90% of the results
- Small/large number of processors: similar results (simpler problem)
- GREEDY-FILLING:
- $\approx 25\%$ of gain
- $\bullet~<20\%$ from the lower bound

Results on SYNTH-RAND

- Similar results with random thresholds
- Larger gaps between GREEDY-FILLING and the others
- Maximum gap happens for smaller platforms

Results on TREES

- Shape of the results depends a lot on the matrix
- Here: one matrix with different ordering and amalgamation parameters
- ▶ GREEDY-FILLING (almost always) better than both others
- Smaller maximum gain (around 15%)

Outline

Problem complexity

2 Analysis of PROPORTIONALMAPPING [Pothen et al. 1993]

Oesign of a greedy strategy

4 Experimental comparison

Conclusion

On the algorithms

- PROPMAPPING: does not take advantage of malleability
- FLOWFLEX: produces gaps that cannot be filled afterwards
- ► GREEDY-FILLING: simple, greedy, close to the lower bound

On the model

- Simplest model to account for limited parallelism
- Still NP-complete
- Possible to derive theoretical guarantees (2-approx. algorithms)

Perspectives

- Conduct experiments to assess the model and study thresholds
- ► Focus on moldable tasks study the gain of malleability

Conclusion

On the algorithms

- PROPMAPPING: does not take advantage of malleability
- FLOWFLEX: produces gaps that cannot be filled afterwards
- ► GREEDY-FILLING: simple, greedy, close to the lower bound

On the model

- Simplest model to account for limited parallelism
- Still NP-complete
- ▶ Possible to derive theoretical guarantees (2-approx. algorithms) ☺

Perspectives

- Conduct experiments to assess the model and study thresholds
- ► Focus on moldable tasks study the gain of malleability

Conclusion

On the algorithms

- PROPMAPPING: does not take advantage of malleability
- FLOWFLEX: produces gaps that cannot be filled afterwards
- ► GREEDY-FILLING: simple, greedy, close to the lower bound

On the model

- Simplest model to account for limited parallelism
- Still NP-complete
- Possible to derive theoretical guarantees (2-approx. algorithms)

Perspectives

- Conduct experiments to assess the model and study thresholds
- Focus on moldable tasks study the gain of malleability