
Minimizing the makespan
Extensions to distributed memory
Gain of speedup-aware strategies

Scheduling Trees of Malleable Tasks for Sparse Linear Algebra

Abdou Guermouche Loris Marchal Bertrand Simon Frédéric Vivien

ENS Lyon

Nov. 2014

Abdou Guermouche, Loris Marchal, Bertrand Simon, Frédéric Vivien Scheduling Trees of Malleable Tasks for Sparse Linear Algebra 1 / 23



Minimizing the makespan
Extensions to distributed memory
Gain of speedup-aware strategies

Introduction

Motivation
Ï Parallel workloads → task graphs (DAGs)
Ï Multifrontal Cholesky/LU sparse matrix factorization → task trees

Overview of the model
Ï Malleable tasks: tasks are processed on a variable number of processors
Ï Speedup: pα with 0<α≤ 1
Example: task Ti is alloted pi processors → processing time =Li/pαi

Ï p ∈R+: non-integer number of processors (time-sharing)

Model advocated by Prasanna and Musicus in [PM96]

Main objective
Minimize the processing time of a malleable task tree graph using:

Ï Tree parallelism
Ï Task parallelism
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Validation of the malleable task model

Validation criteria
Ï Relevance of malleable-task tree graphs
Ï Validation of the speedup model for various shares of processors
Ï Uniformity of the value of α within an application
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Validation of the malleable task model

Validation criteria
Ï Relevance of malleable-task tree graphs
Ï Validation of the speedup model for various shares of processors
Ï Uniformity of the value of α within an application

Multifrontal sparse direct solvers → matrix factorization
 tree-shaped task graph (assembly tree)

A task of the assembly tree → partial factorization
 graph of smaller granularity tasks (kernels)

decomposed

updated

(a) Tiled dense sub-matrix to be partially decomposed
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(b) Corresponding kernel graph

Decomposition of a task of the DAG of a Cholesky decomposition into smaller kernels
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Validation of the malleable task model

Validation criteria
Ï Relevance of malleable-task tree graphs
Ï Validation of the speedup model for various shares of processors
Ï Uniformity of the value of α within an application

Experiments using the StarPU runtime:
Ï on 4 10-core processors (p ≤ 40)
Ï 3 dense kernels tested: Cholesky, QR
(Morse), qr_mumps

⇒ Model fits well except for small matrices
with a large p
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(c) Timings and model for QR on 4096×N matrices
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Validation of the malleable task model

Validation criteria
Ï Relevance of malleable-task tree graphs
Ï Validation of the speedup model for various shares of processors
Ï Uniformity of the value of α within an application

Cholesky, QR on dense matrix: α≈ 1.

Using qr_mumps:
Ï α: used linear regression on ’small’ p
Ï computed α ≈ independent of matrix size
Ï α depends on

Parameters of the problem
Memory performance (NUMA)

⇒ Model valid for p smaller than a threshold
that should not be reached in practice
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(d) Timings and model with 1D partitioning

matrix value of α value of α
size for 1D partitioning for 2D partitioning

5000x1000 0.78 0.93
10000x2500 0.88 0.95
20000x5000 0.89 0.94

(e) Values of α measured for qr_mumps tasks
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Model and notations

Parameters of the problem
Ï In-tree G of malleable tasks of lengths Li → precedence constraints
Ï Speedup f (= sequential time / parallel time):

f (p)= pα for 0<α≤ 1, p ∈R+

processing time of Ti : = argmin
C

{∫ C

0
pi (t)α dt ≥Li

}
Ï Processor profile: step function p(t), available number of processors at time t

The speedup function

1
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no parallelism
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Series-Parallel graphs as a generalization of trees
Motivation

Ï Our objective: study trees
Ï Next part: consider more general graphs

Series-Parallel graphs
Recursively defined by being either:

Ï a single task
Ï a parallel composition of two SP graphs
Ï a series composition of two SP graphs

A tree can be extended to a SP graph.

T

T

1

2

4 65 3
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Characterization of the optimal schedule
Scheme of the proof of the theorem

3 Extensions to distributed memory
Homogeneous multicore nodes
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5 Conclusion
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Characterization of the optimal schedule
Scheme of the proof of the theorem

Statement of the problem

Context and hypotheses
Ï Objects of interest: miminum-makespan schedules of a SP graph G
Ï [PM96] proved these results using heavy optimal control theory
Ï Our objective: reprove it using pure-scheduling arguments

Theorem (Prasanna & Musicus)

In optimal schedules, at any parallel node G1 ∥G2, the ratio of processors given to each
branch is constant.

G1

G2
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Characterization of the optimal schedule
Scheme of the proof of the theorem

Consequences of the theorem

Corollary
Ï In optimal schedules:

∀i , pi (t)/p(t) is constant
Children of a node terminate simultaneously

Ï G ≈ equivalent task TG of length LG defined by:
LTi =Li
LG1 ;G2 =LG1 +LG2

LG1 ∥G2 =
(
L

1/α
G1

+L
1/α
G2

)α
Ï The (unique) optimal schedule SPM can be computed in polynomial time.
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A tree G (particular SP graph) and the shape of its optimal schedule under any p(t)
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Characterization of the optimal schedule
Scheme of the proof of the theorem

First lemma used in the proof

Definition (Clean interval)

A time interval during which no task terminates in the considered schedule.

Lemma

If p(t) is constant then pi (t) are constant in optimal schedules.
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time

p =⇒
1

2
3

4

time

p

Modification of a non-optimal schedule
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Characterization of the optimal schedule
Scheme of the proof of the theorem

Proof of first lemma

Proof.

Suppose P optimal where ∃j , pj (t) is not constant on a clean interval ∆

Ï Let Q ≈P except on ∆: ∀i , qi =
1
|∆|

∫
∆
pi (t)dt proc. allocated to Ti

Ï Work done on Ti during ∆:

W∆
i (P )=

∫
∆
pi (t)αdt = |∆|

∫
[0,1]

pi (t1+ t|∆|)αdt

W∆
i (Q)=

∫
∆

( 1
|∆|

∫
∆
pi (t)dt

)α
dx = |∆|

(∫
[0,1]

pi (t1+ t|∆|)dt
)α

Ï Jensen inequality ⇒ ∀i , W∆
i (P )≤W∆

i (Q)

⇒ W∆
j (P )<W∆

j (Q)

Ï Modify Q: give ε processors to all i from j during ∆ −→ Q completes earlier
⇒ P is not optimal.
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Characterization of the optimal schedule
Scheme of the proof of the theorem

Main lemma

Lemma

In optimal schedules of G =T1 ∥T2, p1(t)/p(t) is constant.

Proof scheme. (Note that p(t) is not necessarily constant)

Ï Suppose that S optimal and p1(t)/p(t) is not constant
Ï We can transform S in S ′ with a smaller makespan
Ï Properties used: strict concavity of f and ∀xy , f (xy)= f (x)f (y)

S

T2

T1

T1

T2

rA1

rB1

1

0

A B

=⇒
T2

T1 T1

T2

r1

1

0

S ′

A B
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Characterization of the optimal schedule
Scheme of the proof of the theorem

End of the proof of the theorem

Few steps remaining to prove the theorem
Ï T1 ∥T2 under any p(t) ⇐⇒ T1∥2 of length L1∥2 under any p(t)
Ï T1 ;T2 under any p(t) ⇐⇒ T1 ;2 of length L1 ;2 under any p(t)
Ï Proof by induction on the structure of G

Computing xα and x1/α

Claim The optimal solution can be computed in polynomial-time
Issue Need to compute functions x 7→ xα and x 7→ x1/α

Recall: LG1 ∥G2 =
(
L

1/α
G1

+L
1/α
G2

)α
Hypothesis Considered as elementary operations

(or similarly consider polynomial-time approximations)
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Homogeneous multicore nodes
Heterogeneous multicore nodes

Description of the distributed memory model

Motivation
Ï Multiprocessors nodes
Ï Each node has its own memory
Ï R constraint: tasks cannot be split between two nodes

Two special cases
Ï Processing power:

two identical nodes of size p
two nodes of sizes p and q

Ï Same hypothesis on the computation of xα and x1/α

Results
Ï Makespan-minimizing schedules:

NP-complete for independent tasks and identical nodes
Identical nodes:

( 4
3

)α
-approximation for any tree

Different nodes: FPTAS for independent tasks
Ï Strategy: adaptations from the PM schedule (previous section) without R
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Heterogeneous multicore nodes

The identical nodes problem

Notations of the tree G
Ï Root has length 0 and several children
Ï Children of the root: ci
Ï Ai : Subtree rooted at ci
Ï LA1 ≥LA2 ≥ ·· · ≥LAk
Ï A1 is allocated xp processors by the PM schedule launched on 2p processors

root

c1

· · ·

c2

· ·

c3

·

A1 A2 A3

c1 c2 c3

xp

tim
e

share of processors

p p

PM schedule on 2p processors
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Homogeneous multicore nodes
Heterogeneous multicore nodes

The
(4
3
)α-approximation algorithm

1: function HomogeneousApp(G, p)
2: Compute the PM schedule SPM of G on 2p processors
3: if x ≥ 1 and c1 is a leaf then
4:

Ï

Build S from SPM: shrink c1 → p processors
5: else if x ≤ 1 then . Case implying the

(
4
3
)α
factor

6:

Ï

Build S : partition the Ai ’s in both nodes
7: else
8: Compute the schedule Sp
9: S r ← HomogeneousApp((A1 \c1)∥Bp , p)
10:

Ï

Build S : schedule (A1 \c1)∥Bp as in S r then c1 ∥Bp as in Sp
11: return S
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PM schedule
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p p
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6:

Ï

Build S : partition the Ai ’s in both nodes
7: else
8: Compute the schedule Sp
9: S r ← HomogeneousApp((A1 \c1)∥Bp , p)
10: Ï Build S : schedule (A1 \c1)∥Bp as in S r then c1 ∥Bp as in Sp
11: return S

BA1

c1

p p

PM schedule

→
Sp

c1

A1 \c1

Bp

Bp

p p

⇒
S

c1 Bp

Recursive call

p p
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Homogeneous multicore nodes
Heterogeneous multicore nodes

Heterogeneous multicore nodes

Definition of (p,q)-Scheduling
Ï Two nodes of size p and q with the same α value
Ï n independent tasks T1 . . .Tn of length Li
Ï Objective: map each task to a node to minimize the makespan
Ï Approximation: given ε, find a schedule whose makespan is ≤ (1+ε)OPT

Related problem: Subset Sum
Ï Input : n integers and a target s

Output: a subset of the integers that sums to the largest number ≤ s
Ï FPTAS [Kellerer03]: given ε, returns a solution whose sum is ≥ (1−ε)OPT

Theorem

There exists a FPTAS to (p,q)-Scheduling Restricted where L1/αi are integer.
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Evaluation method

Strategies to compare to PM
Ï Divisible: sequential schedule
Ï Proportional (proportional mapping): power allocated to each subtree is
proportional to its length (eq. to Musicus assuming α= 1)

Dataset
Ï 600 trees containing between 2,000 and 1,000,000 nodes
Ï p(t)= 40 or p(t)= 100, α ∈ [0.5,1]
Ï Speedup: pα for p ≥ 1 and p otherwise

Obtention of the dataset:
Ï Compute assembly trees for a
set of the University of Florida
Sparse Matrix Collection

Ï Modify the trees such that PM
allocates ≥ 1 processors per task

1

2

3 4 5

6

7 8

9 ⇒

1

2

3 4 5

96

7 8

⇒

1

2

3

4 5

96

7 8

Shaded tasks are alloted < 1 processor by PM
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Results
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Comparison to the PM schedule with p(t)= 40

Expected gain of 3%–5% for α ∈ [0.85,0.95] compared to Proportional
Ï Still noticeable gain if transposed to real software implementations
Ï α should be smaller for machines with smaller memory bandwidth
Ï Core computing rates increase faster than memory bandwidth

→ lower values of α are expected
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Conclusion

Scheduling malleable task trees on multicore platforms with speedup = pα

Ï Model motivated and validated by experiments: α ∈ [0.85,0.95]
Ï Intuitive proof of the optimal scheduling strategy

Extension to two multicore nodes
Ï NP-completeness of the problem
Ï

(
4
3
)α
-approximation for trees on homogeneous nodes

Ï FPTAS for independent tasks on heterogeneous nodes

Perspectives
Ï Handle several heterogeneous nodes
Ï Handle nodes with different values of α (accelerators: GPU, Xeon Phi)
Ï Implement the PM allocation scheme in a sparse solver
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