Scheduling Trees of Malleable Tasks for Sparse Linear Algebra

Abdou Guermouche Loris Marchal Bertrand Simon Frédéric Vivien

ENS Lyon

Nov. 2014

Introduction

Motivation

- ▶ Parallel workloads \rightarrow task graphs (DAGs)
- ▶ Multifrontal Cholesky/LU sparse matrix factorization \rightarrow task trees

Overview of the model

- Malleable tasks: tasks are processed on a variable number of processors
- ► Speedup: p^{α} with $0 < \alpha \le 1$ Example: task T_i is alloted p_i processors \rightarrow processing time $= L_i / p_i^{\alpha}$
- ▶ $p \in \mathbb{R}^+$: non-integer number of processors (time-sharing)

Model advocated by Prasanna and Musicus in [PM96]

Main objective

Minimize the processing time of a malleable task tree graph using:

- Tree parallelism
- Task parallelism

Validation of the malleable task model

Validation criteria

- Relevance of malleable-task tree graphs
- Validation of the speedup model for various shares of processors
- Uniformity of the value of α within an application

Validation of the malleable task model

Validation criteria

- Relevance of malleable-task tree graphs
- Validation of the speedup model for various shares of processors
- Uniformity of the value of α within an application

Multifrontal sparse direct solvers \rightarrow matrix factorization

→ tree-shaped task graph (assembly tree)

A task of the assembly tree \rightarrow partial factorization

→ graph of smaller granularity tasks (kernels)

(a) Tiled dense sub-matrix to be partially decomposed

(b) Corresponding kernel graph

Decomposition of a task of the DAG of a Cholesky decomposition into smaller kernels

Validation of the malleable task model

Validation criteria

- Relevance of malleable-task tree graphs
- Validation of the speedup model for various shares of processors
- Uniformity of the value of a within an application

Experiments using the StarPU runtime:

- on 4 10-core processors $(p \le 40)$
- 3 dense kernels tested: Cholesky, QR (Morse), qr_mumps
- ⇒ Model fits well except for small matrices with a large p

(c) Timings and model for QR on 4096 × N matrices

Validation of the malleable task model

Validation criteria

- Relevance of malleable-task tree graphs
- Validation of the speedup model for various shares of processors
- Uniformity of the value of α within an application

Cholesky, QR on dense matrix: $\alpha \approx 1$.

Using qr_mumps:

- α: used linear regression on 'small' p
- computed $\alpha \approx$ independent of matrix size
- $\blacktriangleright \alpha$ depends on
 - Parameters of the problem
 - Memory performance (NUMA)
- ⇒ Model valid for p smaller than a threshold that should not be reached in practice

(d) Timings and model with 1D partitioning

matrix	value of α	value of α
size	for 1D partitioning	for 2D partitioning
5000×1000	0.78	0.93
10000×2500	0.88	0.95
20000×5000	0.89	0.94

(e) Values of α measured for qr_mumps tasks

Model and notations

Parameters of the problem

- ▶ In-tree G of malleable tasks of lengths $L_i \rightarrow$ precedence constraints
- Speedup f (= sequential time / parallel time):
 - $f(p) = p^{\alpha}$ for $0 < \alpha \le 1$, $p \in \mathbb{R}^+$
 - processing time of T_i : = argmin $\left\{ \int_0^C p_i(t)^{\alpha} dt \ge L_i \right\}$
- **Processor profile**: step function p(t), available number of processors at time t

Series-Parallel graphs as a generalization of trees

Motivation

- Our objective: study trees
- Next part: consider more general graphs

Series-Parallel graphs

Recursively defined by being either:

- a single task
- a parallel composition of two SP graphs
- a series composition of two SP graphs

A tree can be extended to a SP graph.

Т

Series-Parallel graphs as a generalization of trees

Motivation

- Our objective: study trees
- Next part: consider more general graphs

Series-Parallel graphs

Recursively defined by being either:

- a single task
- a parallel composition of two SP graphs
- a series composition of two SP graphs

A tree can be extended to a SP graph.

Series-Parallel graphs as a generalization of trees

Motivation

- Our objective: study trees
- Next part: consider more general graphs

Series-Parallel graphs

Recursively defined by being either:

- a single task
- a parallel composition of two SP graphs
- a series composition of two SP graphs

A tree can be extended to a SP graph.

 $G_1;G_2$

Outline

Introduction and notations

2 Minimizing the makespan

- Characterization of the optimal schedule
- Scheme of the proof of the theorem

Extensions to distributed memory

- Homogeneous multicore nodes
- Heterogeneous multicore nodes

Characterization of the optimal schedule scheme of the proof of the theorem

Outline

Introduction and notations

2 Minimizing the makespan

- Characterization of the optimal schedule
- Scheme of the proof of the theorem

3 Extensions to distributed memory

Gain of speedup-aware strategies

Conclusion

Statement of the problem

Context and hypotheses

- Objects of interest: miminum-makespan schedules of a SP graph G
- [PM96] proved these results using *heavy* optimal control theory
- Our objective: reprove it using pure-scheduling arguments

Theorem (Prasanna & Musicus)

In optimal schedules, at any parallel node $G_1 \parallel G_2$, the ratio of processors given to each branch is constant.

Statement of the problem

Context and hypotheses

- Objects of interest: miminum-makespan schedules of a SP graph G
- [PM96] proved these results using *heavy* optimal control theory
- Our objective: reprove it using pure-scheduling arguments

Theorem (Prasanna & Musicus)

In optimal schedules, at any parallel node $G_1 \parallel G_2$, the ratio of processors given to each branch is constant.

Consequences of the theorem

Corollary

- In optimal schedules:
 - $\forall i, p_i(t)/p(t)$ is constant
 - Children of a node terminate simultaneously
- $G \approx$ equivalent task T_G of length \mathcal{L}_G defined by:

•
$$\mathcal{L}_{T_i} = L_i$$

•
$$\mathscr{L}_{G_1;G_2} = \mathscr{L}_{G_1} + \mathscr{L}_{G_2}$$

•
$$\mathscr{L}_{G_1 \parallel G_2} = \left(\mathscr{L}_{G_1}^{1/\alpha} + \mathscr{L}_{G_2}^{1/\alpha} \right)^{\alpha}$$

► The (unique) optimal schedule 𝒴_{PM} can be computed in polynomial time.

A tree G (particular SP graph) and the shape of its optimal schedule under any p(t)

Characterization of the optimal schedule Scheme of the proof of the theorem

First lemma used in the proof

Definition (Clean interval)

A time interval during which no task terminates in the considered schedule.

Lemma

If p(t) is constant then $p_i(t)$ are constant in optimal schedules.

Modification of a non-optimal schedule

Proof.

Suppose \mathscr{P} optimal where $\exists j, p_i(t)$ is not constant on a clean interval Δ

- ► Let $\mathscr{Q} \approx \mathscr{P}$ except on Δ : $\forall i, q_i = \frac{1}{|\Delta|} \int_{\Delta} p_i(t) dt$ proc. allocated to T_i
- Work done on T_i during Δ :

$$W_{i}^{\Delta}(\mathcal{P}) = \int_{\Delta} p_{i}(t)^{\alpha} dt = |\Delta| \int_{[0,1]} p_{i}(t_{1} + t|\Delta|)^{\alpha} dt$$
$$W_{i}^{\Delta}(\mathcal{Q}) = \int_{\Delta} \left(\frac{1}{|\Delta|} \int_{\Delta} p_{i}(t) dt\right)^{\alpha} dx = |\Delta| \left(\int_{[0,1]} p_{i}(t_{1} + t|\Delta|) dt\right)^{\alpha}$$

► Jensen inequality
$$\Rightarrow \forall i, W_i^{\Delta}(\mathscr{P}) \leq W_i^{\Delta}(\mathscr{Q})$$

 $\Rightarrow W_j^{\Delta}(\mathscr{P}) < W_j^{\Delta}(\mathscr{Q})$

Proof.

Suppose \mathscr{P} optimal where $\exists j, p_i(t)$ is not constant on a clean interval Δ

- ► Let $\mathscr{Q} \approx \mathscr{P}$ except on Δ : $\forall i, q_i = \frac{1}{|\Delta|} \int_{\Delta} p_i(t) dt$ proc. allocated to T_i
- Work done on T_i during Δ :

$$W_{i}^{\Delta}(\mathcal{P}) = \int_{\Delta} p_{i}(t)^{\alpha} dt = |\Delta| \int_{[0,1]} p_{i}(t_{1} + t|\Delta|)^{\alpha} dt$$
$$W_{i}^{\Delta}(\mathcal{Q}) = \int_{\Delta} \left(\frac{1}{|\Delta|} \int_{\Delta} p_{i}(t) dt\right)^{\alpha} dx = |\Delta| \left(\int_{[0,1]} p_{i}(t_{1} + t|\Delta|) dt\right)^{\alpha}$$

► Jensen inequality
$$\Rightarrow \forall i, W_i^{\Delta}(\mathscr{P}) \leq W_i^{\Delta}(\mathscr{Q})$$

 $\Rightarrow W_j^{\Delta}(\mathscr{P}) < W_j^{\Delta}(\mathscr{Q})$

Proof.

Suppose \mathscr{P} optimal where $\exists j, p_i(t)$ is not constant on a clean interval Δ

- ► Let $\mathscr{Q} \approx \mathscr{P}$ except on Δ : $\forall i, q_i = \frac{1}{|\Delta|} \int_{\Delta} p_i(t) dt$ proc. allocated to T_i
- Work done on T_i during Δ :

$$W_i^{\Delta}(\mathcal{P}) = \int_{\Delta} p_i(t)^{\alpha} dt = |\Delta| \int_{[0,1]} p_i(t_1 + t|\Delta|)^{\alpha} dt$$
$$W_i^{\Delta}(\mathcal{Q}) = \int_{\Delta} \left(\frac{1}{|\Delta|} \int_{\Delta} p_i(t) dt\right)^{\alpha} dx = |\Delta| \left(\int_{[0,1]} p_i(t_1 + t|\Delta|) dt\right)^{\alpha}$$

► Jensen inequality
$$\Rightarrow \forall i, W_i^{\Delta}(\mathscr{P}) \leq W_i^{\Delta}(\mathscr{Q})$$

 $\Rightarrow W_j^{\Delta}(\mathscr{P}) < W_j^{\Delta}(\mathscr{Q})$

Proof.

Suppose \mathscr{P} optimal where $\exists j, p_i(t)$ is not constant on a clean interval Δ

- ► Let $\mathscr{Q} \approx \mathscr{P}$ except on Δ : $\forall i, q_i = \frac{1}{|\Delta|} \int_{\Delta} p_i(t) dt$ proc. allocated to T_i
- Work done on T_i during Δ :

$$W_{i}^{\Delta}(\mathscr{P}) = \int_{\Delta} p_{i}(t)^{\alpha} dt = |\Delta| \int_{[0,1]} p_{i}(t_{1} + t|\Delta|)^{\alpha} dt$$
$$W_{i}^{\Delta}(\mathscr{Q}) = \int_{\Delta} \left(\frac{1}{|\Delta|} \int_{\Delta} p_{i}(t) dt\right)^{\alpha} dx = |\Delta| \left(\int_{[0,1]} p_{i}(t_{1} + t|\Delta|) dt\right)^{\alpha}$$

► Jensen inequality $\Rightarrow \forall i, W_i^{\Delta}(\mathscr{P}) \leq W_i^{\Delta}(\mathscr{Q})$ $\Rightarrow W_j^{\Delta}(\mathscr{P}) < W_j^{\Delta}(\mathscr{Q})$

Proof.

Suppose \mathscr{P} optimal where $\exists j, p_i(t)$ is not constant on a clean interval Δ

- ► Let $\mathscr{Q} \approx \mathscr{P}$ except on Δ : $\forall i, q_i = \frac{1}{|\Delta|} \int_{\Delta} p_i(t) dt$ proc. allocated to T_i
- Work done on T_i during Δ :

$$W_{i}^{\Delta}(\mathscr{P}) = \int_{\Delta} p_{i}(t)^{\alpha} dt = |\Delta| \int_{[0,1]} p_{i}(t_{1} + t|\Delta|)^{\alpha} dt$$
$$W_{i}^{\Delta}(\mathscr{Q}) = \int_{\Delta} \left(\frac{1}{|\Delta|} \int_{\Delta} p_{i}(t) dt\right)^{\alpha} dx = |\Delta| \left(\int_{[0,1]} p_{i}(t_{1} + t|\Delta|) dt\right)^{\alpha}$$

► Jensen inequality $\Rightarrow \forall i, W_i^{\Delta}(\mathscr{P}) \leq W_i^{\Delta}(\mathscr{Q})$ $\Rightarrow W_j^{\Delta}(\mathscr{P}) < W_j^{\Delta}(\mathscr{Q})$

Main lemma

Lemma

In optimal schedules of $G = T_1 || T_2$, $p_1(t)/p(t)$ is constant.

Proof scheme. (Note that p(t) is not necessarily constant)

- Suppose that \mathscr{S} optimal and $p_1(t)/p(t)$ is not constant
- \blacktriangleright We can transform ${\mathscr S}$ in ${\mathscr S}'$ with a smaller makespan
- ▶ Properties used: strict concavity of f and $\forall xy$, f(xy) = f(x)f(y)

Characterization of the optimal schedule Scheme of the proof of the theorem

End of the proof of the theorem

Few steps remaining to prove the theorem

- ► $T_1 \parallel T_2$ under any $p(t) \iff T_1 \parallel_2$ of length $\mathscr{L}_{1 \parallel 2}$ under any p(t)
- ► T_1 ; T_2 under any $p(t) \iff T_{1;2}$ of length $\mathscr{L}_{1;2}$ under any p(t)
- Proof by induction on the structure of G

End of the proof of the theorem

Few steps remaining to prove the theorem

- ► $T_1 \parallel T_2$ under any $p(t) \iff T_1 \parallel_2$ of length $\mathscr{L}_{1 \parallel 2}$ under any p(t)
- ▶ T_1 ; T_2 under any $p(t) \iff T_{1;2}$ of length $\mathcal{L}_{1;2}$ under any p(t)
- Proof by induction on the structure of G

Computing x^{α} and $x^{1/\alpha}$

Claim The optimal solution can be computed in polynomial-time Issue Need to compute functions $x \mapsto x^{\alpha}$ and $x \mapsto x^{1/\alpha}$ Recall: $\mathscr{L}_{G_1 \parallel G_2} = \left(\mathscr{L}_{G_1}^{1/\alpha} + \mathscr{L}_{G_2}^{1/\alpha} \right)^{\alpha}$ Hypothesis Considered as elementary operations (or similarly consider polynomial-time approximations)

Homogeneous multicore nodes Heterogeneous multicore nodes

Outline

Introduction and notations

2 Minimizing the makespan

Extensions to distributed memory
Homogeneous multicore nodes
Heterogeneous multicore nodes

Gain of speedup-aware strategies

5 Conclusion

Abdou Guermouche, Loris Marchal, Bertrand Simon, Frédéric Vivien Scheduling Trees of Malleable Tasks for Sparse Linear Algebra 14/23

Description of the distributed memory model

Motivation

- Multiprocessors nodes
- Each node has its own memory
- ▶ *ℛ* constraint: tasks cannot be split between two nodes

Two special cases

- Processing power:
 - two identical nodes of size p
 - two nodes of sizes p and q
- Same hypothesis on the computation of x^{α} and $x^{1/\alpha}$

Results

- Makespan-minimizing schedules:
 - NP-complete for independent tasks and identical nodes
 - Identical nodes: $\left(\frac{4}{3}\right)^{\mu}$ -approximation for any tree
 - Different nodes: FPTAS for independent tasks
- \blacktriangleright Strategy: adaptations from the PM schedule (previous section) without ${\mathscr R}$

The identical nodes problem

Notations of the tree G

- Root has length 0 and several children
- Children of the root: c_i
- A_i: Subtree rooted at c_i
- $\blacktriangleright \mathscr{L}_{A_1} \ge \mathscr{L}_{A_2} \ge \cdots \ge \mathscr{L}_{A_k}$
- A_1 is allocated xp processors by the PM schedule launched on 2p processors

PM schedule on 2p processors

The identical nodes problem

Notations of the tree G

- Root has length 0 and several children
- Children of the root: c_i
- A_i: Subtree rooted at c_i
- $\blacktriangleright \mathscr{L}_{A_1} \ge \mathscr{L}_{A_2} \ge \cdots \ge \mathscr{L}_{A_k}$
- A_1 is allocated xp processors by the PM schedule launched on 2p processors

PM schedule on 2p processors

Homogeneous multicore nodes Heterogeneous multicore nodes

1:	function $HOMOGENEOUSAPP(G, p)$
2:	Compute the PM schedule \mathscr{S}_{PM} of G on $2p$ processors
3:	if $x \ge 1$ and c_1 is a leaf then
4:	Build \mathscr{S} from \mathscr{S}_{PM} : shrink $c_1 \rightarrow p$ processors
5:	else if $x \le 1$ then \triangleright Case implying the $\left(\frac{4}{3}\right)^{\alpha}$ factor
6:	Build \mathscr{S} : partition the A_i 's in both nodes
7:	else
8:	Compute the schedule \mathscr{S}_p
9:	$\mathscr{S}^{r} \leftarrow \text{HomogeneousApp}((A_1 \setminus c_1) \ \overline{B}_p, p)$
10:	Build \mathscr{S} : schedule $(A_1 \setminus c_1) \ \overline{B}_p$ as in \mathscr{S}^r then $c_1 \ B_p$ as in \mathscr{S}_p
11:	return \mathscr{S}

Homogeneous multicore nodes Heterogeneous multicore nodes

Homogeneous multicore nodes Heterogeneous multicore nodes

Homogeneous multicore nodes Heterogeneous multicore nodes

Heterogeneous multicore nodes

Definition of (p,q)-SCHEDULING

- Two nodes of size p and q with the same α value
- *n* independent tasks $T_1 \dots T_n$ of length L_i
- Objective: map each task to a node to minimize the makespan
- Approximation: given ε , find a schedule whose makespan is $\leq (1 + \varepsilon)$ OPT

Related problem: SUBSET SUM

- Input : n integers and a target s Output: a subset of the integers that sums to the largest number ≤ s
- ▶ FPTAS [Kellerer03]: given ε , returns a solution whose sum is $\ge (1 \varepsilon)$ OPT

Theorem

There exists a FPTAS to (p,q)-SCHEDULING RESTRICTED where $L_i^{1/\alpha}$ are integer.

Outline

- Introduction and notations
- 2 Minimizing the makespan
- Extensions to distributed memory
- Gain of speedup-aware strategies
- Conclusion

Evaluation method

Strategies to compare to PM

- DIVISIBLE: sequential schedule
- ▶ PROPORTIONAL (proportional mapping): power allocated to each subtree is proportional to its length (eq. to Musicus assuming $\alpha = 1$)

Dataset

- 600 trees containing between 2,000 and 1,000,000 nodes
- p(t) = 40 or p(t) = 100, $\alpha \in [0.5, 1]$
- Speedup: p^{α} for $p \ge 1$ and p otherwise

Obtention of the dataset:

- Compute assembly trees for a set of the University of Florida Sparse Matrix Collection
- Modify the trees such that PM allocates ≥ 1 processors per task

Shaded tasks are alloted < 1 processor by PM

Results

Comparison to the PM schedule with p(t) = 40

Expected gain of 3%–5% for $\alpha \in [0.85, 0.95]$ **compared to PROPORTIONAL**

- Still noticeable gain if transposed to real software implementations
- α should be smaller for machines with smaller memory bandwidth
- Core computing rates increase faster than memory bandwidth \rightarrow lower values of α are expected

Outline

- Introduction and notations
- 2 Minimizing the makespan
- Extensions to distributed memory
- Gain of speedup-aware strategies

Conclusion

Conclusion

Scheduling malleable task trees on multicore platforms with speedup = p^{α}

- ▶ Model motivated and validated by experiments: $\alpha \in [0.85, 0.95]$
- Intuitive proof of the optimal scheduling strategy

Extension to two multicore nodes

- NP-completeness of the problem
- $\left(\frac{4}{3}\right)^{\alpha}$ -approximation for trees on homogeneous nodes
- FPTAS for independent tasks on heterogeneous nodes

Perspectives

- Handle several heterogeneous nodes
- Handle nodes with different values of α (accelerators: GPU, Xeon Phi)
- Implement the PM allocation scheme in a sparse solver